基于维度距离的混合属性密度聚类算法研究 (2009年)

上传者: 38592611 | 上传时间: 2021-05-30 14:03:53 | 文件大小: 268KB | 文件类型: PDF
DBSCAN算法是一种基于密度的聚类算法。针对该算法在处理混合属性数据上的不足,采用面向维度的距离的思想,对不同类型的数据定义不同的相似度度量方法和不同的相似度阚值,减少了对全局相似度阈值的依赖,提出了一种新的适合混合属性数据聚类的算法M-DBSCAN。仿真表明新算法有效解决了DBSCAN算法无法处理混合属性数据的缺点,对混合属性数据有较好的聚类效果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明