适用于迭代型去模糊算法粗精检测相结合的自适应终止机制

上传者: 38592611 | 上传时间: 2021-04-30 17:03:14 | 文件大小: 1.4MB | 文件类型: PDF
由于缺乏合适的去模糊图像质量度量方法,迭代型去模糊算法通常将其迭代次数简单地设置为固定值,无法在执行效率和去模糊质量之间获得最优的平衡点。为此,提出一种粗精检测相结合的迭代终止机制并将其应用到迭代型去模糊算法中以自适应地确定它们最佳的迭代次数。具体地,在每一步迭代过程中利用伪PSNR值细粒度地判断去模糊图像质量是否趋于稳定,另一方面每隔若干步利用从反向卷积残差图像中提取的统计特征值粗粒度准确地判定图像质量是否达到最佳,将两种去模糊图像质量度量方法有机结合以实现一种效率高且准确的迭代终止判定机制。评估结果显示,将所提出的粗精相结合的终止机制应用于NCSR、GSR和ADMM共三种主流去模糊算法后,执行效率可提高50%左右,而去模糊图像质量也得到了最佳保证。实验结果表明,提出的检测机制能够有效地解决各种迭代型去模糊算法因采用固定迭代次数而存在的无益迭代和过迭代问题,非常具有普适性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明