基于深度学习的低信噪比下的快速超分辨荧光显微成像

上传者: 38592502 | 上传时间: 2022-05-16 19:08:27 | 文件大小: 15.59MB | 文件类型: PDF
超分辨荧光成像实验的分辨率和成像质量与实验过程中收集到的荧光分子光子数和背景噪声有着密切的关系。为了实现低光子数、高背景光下的快速超分辨荧光显微成像,利用所提卷积神经网络算法实现了对极低信噪比信号的恢复,并结合重构网络进行了超分辨成像。结果表明:利用该方法可以实现荧光信号在低信噪比下的有效恢复,峰值信噪比可达27 dB,明显优于同类的其他两种算法。该方法还可以配合Deep-STORM重构网络在低信噪比下实现快速的超分辨成像。重构结果的归一化均方误差为7.5%,分辨率相较其他算法有明显提升。实验条件下的重构结果验证了该方法的能力,为弱信号下的荧光快速超分辨成像提供了可行方案。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明