带有熵和加权Weight1-范数的稀疏编码算法在信号重建中的应用

上传者: 38590685 | 上传时间: 2021-11-02 10:10:47 | 文件大小: 2.23MB | 文件类型: -
压缩感测理论近年来引起了广泛的关注,并且稀疏信号重建已广泛用于信号处理和通信中。 本文解决了稀疏信号恢复的问题,尤其是在非高斯噪声的情况下。 本文的主要贡献是提出了一种算法,其中负熵和重新加权方案代表了解决问题方法的核心。 信号重建问题被形式化为约束最小化问题,其中目标函数是误差统计特征项,负熵和稀疏正则项项测量值p的范数之和,对于0 <p <1。但是,p-范数会导致非凸优化问题,难以有效解决。 在这里,我们将'p-范数视为加权的'1-范数的严重范数,以使子问题变得凸。 我们提出了一种优化算法,该算法结合了前向后向拆分。 该算法速度快,能够成功准确地恢复具有高斯和非高斯噪声的稀疏信号。 若干数值实验和比较证明了该算法的优越性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明