去噪代码matlab-VCONV-DAE:3D体积降噪自动编码器(ECCV-16)的源代码

上传者: 38588520 | 上传时间: 2022-06-23 10:54:08 | 文件大小: 128.11MB | 文件类型: ZIP
去噪声代码matlab Vconv-dae:无对象标签的深度体积形状学习 VCONV-DAE中用于重现实验的代码是3D体积降噪自动编码器。 该存储库提供用于训练模型并可视化最终结果以完成形状和混合的数据以及代码工具。 如果使用此代码,请引用以下文章: VConv-DAE:没有对象标签的深度体积形状学习 在2016年欧洲计算机视觉会议(ECCVW)上。 对此代码有任何疑问,请发送电子邮件至。 请注意,最近的各种工作都将Vconv-dae视为基线,因此在不同的框架中可能具有相同的实现方式。 先决条件 该存储库混合了用lua和Matlab编写的脚本。 需要安装割炬来训练模型。 出于可视化目的,需要Matlab。 请注意,此代码仅出于研究目的而编写。 请阅读以下简要说明,以充分利用脚本。 --train_vol_autoencoder.lua是用于在体积数据上训练去噪自动编码器的主文件。 -数据存储在“数据”文件夹中。 形状分类和完成定量结果 --mess_classifer以二进制格式保存所有测试集的固定长度描述符。 稍后由matlab中的eval_classification脚本读取,该脚

文件下载

资源详情

[{"title":"( 72 个子文件 128.11MB ) 去噪代码matlab-VCONV-DAE:3D体积降噪自动编码器(ECCV-16)的源代码","children":[{"title":"VCONV-DAE-master","children":[{"title":"tes_overall_error.lua <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"tes_overall_error.lua~ <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"mesh_descriptor.m <span style='color:#111;'> 705B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"voxel.m <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"eval_classification.m <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"create_struct_dataset.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"off_to_mat.m <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"readme <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":"split_data.m <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"plot3D.m <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"sparse3D.m <span style='color:#111;'> 944B </span>","children":null,"spread":false},{"title":"eval_retrieval.m <span style='color:#111;'> 931B </span>","children":null,"spread":false},{"title":"forking_dataset.m <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"create_mult_class_data.m <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"eval_completion.lua <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"mean_noise_plot.m <span style='color:#111;'> 740B </span>","children":null,"spread":false},{"title":"no_noise_error.lua <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"feat_cosine_sim.m <span style='color:#111;'> 567B </span>","children":null,"spread":false},{"title":"error_analysis.lua <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"test_distortion.lua <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"create_dataset.m <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"view_interpolation.m <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"mess_classifier.lua <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"Readme_for_tables.txt~ <span style='color:#111;'> 643B </span>","children":null,"spread":false},{"title":"Data","children":[{"title":"dist_bathtub_te.mat <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"dist_table_te.mat <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"chair_te.mat <span style='color:#111;'> 909.06KB </span>","children":null,"spread":false},{"title":"dist_monitor_te.mat <span style='color:#111;'> 3.50MB </span>","children":null,"spread":false},{"title":"rand_bed_te.mat <span style='color:#111;'> 2.23MB </span>","children":null,"spread":false},{"title":"table_te.mat <span style='color:#111;'> 547.76KB </span>","children":null,"spread":false},{"title":"dist_dresser_te.mat <span style='color:#111;'> 3.92MB </span>","children":null,"spread":false},{"title":"desk_te.mat <span style='color:#111;'> 866.98KB </span>","children":null,"spread":false},{"title":"mul-class_tr_10_reduced.mat <span style='color:#111;'> 8.20MB </span>","children":null,"spread":false},{"title":"night_stand_te.mat <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"rand_chair_te.mat <span style='color:#111;'> 2.55MB </span>","children":null,"spread":false},{"title":"rand_sofa_te.mat <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"toilet_te.mat <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"bathtub_te.mat <span style='color:#111;'> 356.11KB </span>","children":null,"spread":false},{"title":"rand_dresser_te.mat <span style='color:#111;'> 4.01MB </span>","children":null,"spread":false},{"title":"dist_toilet_te.mat <span style='color:#111;'> 3.86MB </span>","children":null,"spread":false},{"title":"rand_monitor_te.mat <span style='color:#111;'> 3.44MB </span>","children":null,"spread":false},{"title":"readme <span style='color:#111;'> 24B </span>","children":null,"spread":false},{"title":"rand_night_stand_te.mat <span style='color:#111;'> 4.02MB </span>","children":null,"spread":false},{"title":"dresser_te.mat <span style='color:#111;'> 1017.75KB </span>","children":null,"spread":false},{"title":"dist_bed_te.mat <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false},{"title":"rand_toilet_te.mat <span style='color:#111;'> 3.85MB </span>","children":null,"spread":false},{"title":"dist_desk_te.mat <span style='color:#111;'> 2.54MB </span>","children":null,"spread":false},{"title":"dist_sofa_te.mat <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"dist_night_stand_te.mat <span style='color:#111;'> 3.92MB </span>","children":null,"spread":false},{"title":"dist_chair_te.mat <span style='color:#111;'> 2.62MB </span>","children":null,"spread":false},{"title":"rand_desk_te.mat <span style='color:#111;'> 2.54MB </span>","children":null,"spread":false},{"title":"rand_bathtub_te.mat <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false},{"title":"rand_table_te.mat <span style='color:#111;'> 1.76MB </span>","children":null,"spread":false},{"title":"monitor_te.mat <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"mul-class","children":[{"title":"mul-class_tr_10_reduced.mat <span style='color:#111;'> 8.20MB </span>","children":null,"spread":false},{"title":"readme <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"mul-class_te.mat <span style='color:#111;'> 3.32MB </span>","children":null,"spread":false},{"title":"mul-class_te_40_reduced.mat <span style='color:#111;'> 7.40MB </span>","children":null,"spread":false},{"title":"mul-class_te_10_reduced.mat <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false},{"title":"mul-class_tr.mat <span style='color:#111;'> 16.44MB </span>","children":null,"spread":false},{"title":"mul-class_tr_40_reduced.mat <span style='color:#111;'> 27.40MB </span>","children":null,"spread":false}],"spread":false},{"title":"sofa_te.mat <span style='color:#111;'> 686.86KB </span>","children":null,"spread":false},{"title":"bed_te.mat <span style='color:#111;'> 644.83KB </span>","children":null,"spread":false}],"spread":false},{"title":"interpolating_decoder.lua~ <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"train_vol_autoencoder.lua~ <span style='color:#111;'> 7.59KB </span>","children":null,"spread":false},{"title":"train_test_pass.lua <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"train_test_pass.lua~ <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"interpolating_decoder.lua <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"train_vol_autoencoder.lua <span style='color:#111;'> 7.67KB </span>","children":null,"spread":false},{"title":"visualise.m <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"FT_trained_model.lua <span style='color:#111;'> 7.93KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明