matlab中rbf源代码-gbt-svm:粒度二叉树支持向量机的MATLAB工具箱

上传者: 38587473 | 上传时间: 2022-03-09 13:09:17 | 文件大小: 1.51MB | 文件类型: -
matlab中rbf源代码支持向量机 在该存储库中,提供了一个MATLAB工具箱,以针对不平衡和多类型分类问题训练和测试基于支持向量机(SVM)的模型。 附加了两个分类技巧,即granularization和binary-tree以形成GBT-SVM模型。 有关该模型的详细信息,请参考我的。 工具箱的构造 文件夹中的代码和脚本可用于构建粒度SVM(GSVM)模型,该模型能够形成树结构分类器。 我在这里列出了名称和相应的注释。 方法 评论 getGranule 通过将主要类别拆分为子集或颗粒来生成平衡的数据集。 myCrossSVM 通过交叉验证和网格化训练SVM模型,内核是可选的。 myGSVM预测 使用训练有素的模型对新样品进行分类。 获取颗粒 为了获得平衡的数据集,您可以使用getGranule作为 >>> [DataGranules] = getGranule(data,label) 输出DataGranules是一个结构,形成为 数据粒度 MajIdx :主要类别的标签 MinIdx :次要类别的标签 GraNum :颗粒数 MinData :次要样本的数据和标签 MajDat

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明