上传者: 38586942
|
上传时间: 2021-07-06 17:21:16
|
文件大小: 313KB
|
文件类型: PDF
滚动轴承是机械传动系统重要的组成部分,其故障发生率极高,直接影响机械设备的正常、安全运行。基于此提出基于局部均值分解(LMD)模糊熵和概率神经网络(PNN)的滚动轴承故障诊断方法,原始振动信号应用LMD自适应分解为7个PF分量;设定模糊函数,提取每个PF分量的模糊熵,实现各PF分量的特征量化;并利用概率神经网络实现故障类型识别。实验结果证明利用该方法滚动轴承故障诊断识别率可达86.25%,是一种有效的滚动轴承故障诊断方法。