基于关键形态特征的多元时间序列降维方法

上传者: 38586428 | 上传时间: 2021-12-04 22:11:26 | 文件大小: 429KB | 文件类型: -
针对传统主成分分析及相关方法对多元时间序列特征表示的局限性,以及降维效果对数据相似性度量质量的影响,从数据形态特征的角度出发,提出一种关键形态特征的多元时间序列降维方法.利用动态时间弯曲方法找出训练集每个类别的中心多元时间序列,根据形态特征找出每个中心多元时间序列的关键特征变量分量的重要度,使用重要度提取若干个关键特征变量分量,达到数据降维的目的.实验结果表明,与传统方法相比,所提方法能够有效地根据形态特征对多元时间序列进行降维,并且能够取得更好的分类效果.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明