FMM与改进GBNN模型相结合的多AUV实时围捕算法

上传者: 38581455 | 上传时间: 2021-08-18 09:12:48 | 文件大小: 781KB | 文件类型: PDF
多自主水下机器人(AUV)实时围捕是一个综合的研究课题,包括联盟生成和目标追捕等阶段.首先,基于快速行进算法(FMM)预估围捕时间,有效形成多AUV的动态围捕联盟;然后,在追捕阶段,AUV需要立即跟踪智能逃逸机器人以防止其逃跑.为了实现这一目标,在GBNN(Glasius biological inspired neural network)模型中使用反比例函数替换指数函数计算神经元连接权值,加入额外的衰减项,并提出两点加快神经元活性传播的改进措施,使其适用于实时追捕路径规划.仿真研究表明,围捕联盟形成机制和反比例权值GBNN模型实时路径规划策略都显示出其优越性.在水下环境的多AUV协作围捕中,所提出的围捕控制算法可以提高围捕效率,减少AUV所花费的追捕距离和逃逸机器人的逃逸距离.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明