matlab三次函数代码-Topology-Optimization:使用EFG或FEM方法的基于移动节点方法的拓扑优化

上传者: 38576922 | 上传时间: 2022-11-23 11:06:57 | 文件大小: 89KB | 文件类型: ZIP
matlab三次函数代码拓扑优化 基于使用EFG,FEM或IIEFG方法的移动节点算法的拓扑优化。 介绍 这套Matlab文件用于通过移动节点方法(MNA)解决2D平面应变问题的拓扑优化。 在这种方法中,材料分布与离散化解耦。 材料分配 材料分布用于指定材料的位置。 它基于质量节点。 由于使用三次样条曲线形状函数的核近似,可以计算出一点的密度。 为了避免数值问题,添加了一些更正。 离散化 必须离散化控制线性弹性方程式以数值方式解决该问题。 离散化方法可以是: 一种称为Element-Free Galerkin(EFG)的无网格方法 有限元方法(FEM) 代码结构 主文件 主文件topologyOptimization.m是一个启动优化器的Matlab脚本。 用户可以更改脚本进行设置 离散化方法(EFG或FEM) 优化变量(质量节点,不可变形的结构构件或可变形的结构构件) 优化算法 问题常数 问题常量在Constants\目录中定义。 这包括 问题几何 边界条件 材料分布常数 离散化 离散化方法使用Discretization\ , EFG\和FEM\目录中的函数。 InitEFGMes

文件下载

资源详情

[{"title":"( 88 个子文件 89KB ) matlab三次函数代码-Topology-Optimization:使用EFG或FEM方法的基于移动节点方法的拓扑优化","children":[{"title":"Topology-Optimization-master","children":[{"title":"README.md <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"TopOpt","children":[{"title":"Constants","children":[{"title":"boundaryConditionsParameters.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"problemConstants.m <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"mergingConstants.m <span style='color:#111;'> 561B </span>","children":null,"spread":false},{"title":"massConstants.m <span style='color:#111;'> 8.67KB </span>","children":null,"spread":false},{"title":"GlobalConst.m <span style='color:#111;'> 843B </span>","children":null,"spread":false},{"title":"optimizationConstants.m <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"LoadCases","children":[{"title":"loadCase1.m <span style='color:#111;'> 863B </span>","children":null,"spread":false},{"title":"boundaryCurveAirfoil.m <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"AirfoilCompliant.m <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"loadCase3.m <span style='color:#111;'> 1010B </span>","children":null,"spread":false},{"title":"loadCase5.m <span style='color:#111;'> 1004B </span>","children":null,"spread":false},{"title":"loadCase2.m <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"loadCase4.m <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"AirfoilStiff.m <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"EFG","children":[{"title":"InitEFGMesh.m <span style='color:#111;'> 17.73KB </span>","children":null,"spread":false},{"title":"EFG.m <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"MLSShape.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"EFGUnitMatrices.m <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"MaterialDistribution","children":[{"title":"directionalComponents.m <span style='color:#111;'> 778B </span>","children":null,"spread":false},{"title":"checkHolesNode.m <span style='color:#111;'> 498B </span>","children":null,"spread":false},{"title":"asymptoticDensity.m <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"neighboringMassNodes.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"merging.m <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"nodeInRegions.m <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"suppressZeroWidthNodes.m <span style='color:#111;'> 257B </span>","children":null,"spread":false},{"title":"filledRegionsMass.m <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"suppressOutsideNodes.m <span style='color:#111;'> 418B </span>","children":null,"spread":false},{"title":"suppressIsolatedNodes.m <span style='color:#111;'> 769B </span>","children":null,"spread":false},{"title":"filledRegionsDensity.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"Display","children":[{"title":"massDisplay.m <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"methodDisplay.m <span style='color:#111;'> 547B </span>","children":null,"spread":false}],"spread":true},{"title":"topologyOptimization.m <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false},{"title":"FEM","children":[{"title":"FEMShape.m <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"FEM.m <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"InitFEMMesh.m <span style='color:#111;'> 15.27KB </span>","children":null,"spread":false},{"title":"FEMUnitMatrices.m <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"Optimization","children":[{"title":"complianceFEM.m <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"outfun.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"matlabMassConstraint.m <span style='color:#111;'> 404B </span>","children":null,"spread":false},{"title":"Optimizers","children":[{"title":"matlabGa.m <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"matlabFmin.m <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"gradientMax.m <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"conjugatedGradients.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"quasiNewtonBFGS.m <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"overvelde.m <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"BFGSMax.m <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"steepestDescent.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"mnodesToVector.m <span style='color:#111;'> 744B </span>","children":null,"spread":false},{"title":"massConstraint.m <span style='color:#111;'> 874B </span>","children":null,"spread":false},{"title":"vectorTomnodes.m <span style='color:#111;'> 840B </span>","children":null,"spread":false},{"title":"Scripts","children":[{"title":"postIteration.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"enableFilter.m <span style='color:#111;'> 832B </span>","children":null,"spread":false},{"title":"postConvergence.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"preOptimization.m <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"postOptimization.m <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false}],"spread":false},{"title":"continuation.m <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"checkFeasability.m <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"complianceEFG.m <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"filterInitialization.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"LineSearch","children":[{"title":"wolfe.m <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"cubicApproximation.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"trueMinimum.m <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"Plots","children":[{"title":"Postprocessing","children":[{"title":"deformedComputation.m <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"densityField.m <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"retrieveData.m <span style='color:#111;'> 947B </span>","children":null,"spread":false},{"title":"FEMIncompatibleShape.m <span style='color:#111;'> 64B </span>","children":null,"spread":false}],"spread":true},{"title":"elementsContour.m <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"densityContour.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"densityPlot.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"format_ticks.m <span style='color:#111;'> 17.40KB </span>","children":null,"spread":false},{"title":"discretizationPlot.m <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"regionsPlot.m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"deformedComputation.m <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"deformedPlot.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"endPlots.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"densityField.m <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"densityEvolutionPlot.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"Callbacks","children":[{"title":"sliderDensity.m <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"buttonDeformed.m <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"sliderContour.m <span style='color:#111;'> 552B </span>","children":null,"spread":false},{"title":"popupDeformed.m <span style='color:#111;'> 603B </span>","children":null,"spread":false}],"spread":false},{"title":"deformedEvolutionPlot.m <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"contourEvolutionPlot.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"mnodesData.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":false},{"title":"Discretization","children":[{"title":"ConGauss.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"WeightTensor.m <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"MonomialBasis.m <span style='color:#111;'> 844B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明