上传者: 38569569
|
上传时间: 2022-04-17 11:52:08
|
文件大小: 522KB
|
文件类型: PDF
电力系统经济调度问题是电力系统中的一个重要的研究课题,针对该问题,提出一种改进粒子群优化(ODPSO)算法.改进算法在搜索前期,采用广义的反向学习策略,使算法能够快速地靠近较优的搜索区域,从而提高收敛速度;在搜索后期,借鉴差分进化算法的进化机制设计改进的变异和交叉策略,对当前种群的最优粒子进行更新,从而提高种群的多样性,进而协助算法获得全局最优解.为了验证改进粒子群优化算法的有效性,对CEC2006提出的22个基准约束测试函数进行仿真,结果表明改进算法相比其他算法在寻优精度和稳定性上更具优势.最后,将改进算法应用于考虑机组爬坡速率约束、机组禁行区域约束以及电力平衡约束的两个电力系统经济调度问题,取得了令人满意的结果.