基于双曲余弦矩阵鉴别分析的小样本问题研究

上传者: 38564598 | 上传时间: 2021-04-30 17:03:18 | 文件大小: 985KB | 文件类型: PDF
线性判别分析(LDA)是模式识别领域的一个经典方法,但是LDA难以克服小样本问题。针对LDA的小样本问题,提出一种双曲余弦矩阵鉴别分析方法(HCDA)。该方法首先给出了双曲余弦矩阵函数的定义及其特征系统,再利用双曲余弦矩阵函数特征系统的特点,将其引入Fisher准则中进行特征提取。HCDA有两方面的优势:a)避免了小样本问题,可以提取更多的鉴别信息;b)HCDA方法隐含了一个非线性映射。该映射具有扩大样本间距离的作用,并且对不同类别样本间距离的扩大尺度要大于同类别样本间距离的扩大尺度,从而更有利于模式分类。在手写数字库、手写字母图像库和Georgia Tech人脸图像库上的实验结果表明,相对于具有代表性的解决LDA小样本问题的方法,HCDA具有更好的识别性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明