基于YOLOv2框架的车辆实时检测算法

上传者: 38564503 | 上传时间: 2021-12-25 22:04:37 | 文件大小: 307KB | 文件类型: -
目前,中国的城市化水平已超过50%,汽车保有量达到1.4亿辆。 随之而来的交通拥堵问题变得越来越突出。 如何实时,准确地获取车辆的基本信息越来越重要,以便交通部门及时管理特定路段和交叉路口的车辆。 目前,一些相关的方法和算法具有较高的实时性,但准确性不高或相反。 因此,本文提出了一种基于YOLOV2框架的车辆实时检测方法,该方法具有实时性和准确性。 该方法改进了YOLOv2框架模型,优化了模型中的重要参数,扩大了网格尺寸,并改进了模型中锚点的数量和大小,可以自动学习车辆的特征,实现实时,高精度的车辆自动检测和车辆类别识别。 对自制数据集的评估表明,与YOLOv2和Faster RCNN相比,准确率提高到91.80%,召回率提高到63.86%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明