上传者: 38564503
|
上传时间: 2021-12-25 22:04:37
|
文件大小: 307KB
|
文件类型: -
目前,中国的城市化水平已超过50%,汽车保有量达到1.4亿辆。 随之而来的交通拥堵问题变得越来越突出。 如何实时,准确地获取车辆的基本信息越来越重要,以便交通部门及时管理特定路段和交叉路口的车辆。 目前,一些相关的方法和算法具有较高的实时性,但准确性不高或相反。 因此,本文提出了一种基于YOLOV2框架的车辆实时检测方法,该方法具有实时性和准确性。 该方法改进了YOLOv2框架模型,优化了模型中的重要参数,扩大了网格尺寸,并改进了模型中锚点的数量和大小,可以自动学习车辆的特征,实现实时,高精度的车辆自动检测和车辆类别识别。 对自制数据集的评估表明,与YOLOv2和Faster RCNN相比,准确率提高到91.80%,召回率提高到63.86%。