基于语义情感模型的社会情感挖掘

上传者: 38564085 | 上传时间: 2025-10-10 21:06:54 | 文件大小: 904KB | 文件类型: PDF
社会情感挖掘是一个涉及自然语言处理、情感分析和数据挖掘的交叉学科研究领域。近年来,随着社交媒体用户的迅速增长,社交媒体上出现了大量的带有情感标签的短文本。这些短文本不仅包含了用户对社会事件或企业产品的丰富情感和意见,而且对政府和企业制定决策具有参考价值。因此,对社交媒体语料进行社会情感挖掘变得尤为重要。 在情感挖掘模型中,主要有基于统计的方法和基于图的方法两大类。基于统计的方法中,尤其是以隐含狄利克雷分配(LDA)为基础的情感主题模型(如Emotion Topic Model,ETM)最为流行。然而,这些模型普遍面临着诸如准确率低、可解释性差的问题,原因在于它们仅仅考虑了社交媒体语料中的“词袋”模式或情感标签。 为了解决这些问题,本文提出了一种基于LDA的语义情感主题模型(Semantic Emotion-Topic Model,SETM),该模型将情感标签与词汇间的相互关系结合起来,以提高社会情感挖掘结果的检索性能。在SETM模型中,考虑了四个因素对模型性能的影响:关联关系、计算时间、主题数量和语义可解释性。 实验结果表明,提出的SETM模型在准确性上达到了0.750,相比ETM模型的0.606、多标签监督主题模型(MSTM)的0.663和情感潜在主题模型(SLTM)的0.680都有显著的提高。此外,在通过限制词频来降低计算时间后,模型的计算时间减少了87.81%,而准确性为0.703,与上述基线方法的0.501、0.648和0.642相比,依然保持了较高水平。因此,本文提出的模型在社会情感挖掘领域展现了广泛的应用前景。 值得注意的是,研究者们在进行社会情感挖掘时,不仅要关注模型的性能,还要考虑实际应用中的效率问题。模型的计算复杂度和运行时间对于实时处理大量社交媒体数据来说,是一个重要的考量因素。本研究通过限制词频来降低计算时间的方法,不仅提高了模型效率,而且在保证较高准确性的基础上,也为其在实际场景中的应用铺平了道路。 在未来的研究中,如何进一步提高情感模型的准确性,同时降低其对计算资源的要求,是该领域的重要研究方向之一。此外,随着深度学习技术的发展,如何结合深度学习方法来改进现有的情感挖掘模型,也是一个值得探索的领域。深度学习提供了强大的特征提取能力,这可以用于捕捉更为复杂的文本特征,从而进一步提升情感挖掘的性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明