过拟合和欠拟合学习笔记

上传者: 38562329 | 上传时间: 2021-11-15 13:27:33 | 文件大小: 114KB | 文件类型: -
欠拟合 模型无法得到较低的训练误差(模型在训练数据集上表现出的误差),这一现象称作欠拟合(underfitting) 过拟合 过拟合得问题指的是模型在测试集上的结果不好,训练误差较低但是泛化误差依然较高,二者相差较大。 解决过拟合得问题通常可以通过增加数据量,另外还可以用正则化的方法。 正则化 L2范数正则化 通常指得是L2范数正则化,是在损失函数中再加一个正则项λ2n\frac{λ}{2n}2nλ​,其中超参数λ>0λ>0λ>0,损失函数如下 J(W,b)+λ2n∣w∣2J(W,b)+\frac{λ}{2n}|w|^2J(W,b)+2nλ​∣w∣2, L2范数表示向量元素的平方和再开平方。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明