时间序列预测14:如何开发用电量预测CNN模型详解 01 单变量多步时间序列预测

上传者: 38559727 | 上传时间: 2021-10-24 18:11:02 | 文件大小: 63KB | 文件类型: -
文章目录前言适用于多时间步预测的CNN模型1 单变量多步预测 CNN 模型1.1 业务需求1.2 1D CNN 模型1.3 完整代码 前言 与其他机器学习算法不同,卷积神经网络能够从序列数据中自动学习特征,支持多变量数据,并可直接输出用于多步预测的向量。一维CNN已被证明可以很好地执行,甚至在具有挑战性的序列预测问题上也能达到最新的结果。 计划用两篇文章介绍如何开发 1D CNN 进行多步时间序列预测。主要内容如下: 如何为单变量数据开发多步时间序列预测的CNN模型; 如何为多变量数据开发多通道多步时间序列预测的CNN模型; 如何为多变量数据开发多头多步时间序列预测的CNN模型。 本文介绍

文件下载

评论信息

  • weixin_38180381 :
    垃圾都没有内容的
    2021-06-20
  • qq_38824043 :
    这唬人的啊!只有一页
    2021-03-05

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明