一种基于互信息变量选择的极端学习机算法

上传者: 38559569 | 上传时间: 2021-09-27 13:54:01 | 文件大小: 163KB | 文件类型: PDF
针对回归问题中存在的变量选择和网络结构设计问题, 提出一种基于互信息的极端学习机(ELM) 训练算法, 同时实现输入变量的选择和隐含层的结构优化. 该算法将互信息输入变量选择嵌入到ELM网络的学习过程之中, 以网络的学习性能作为衡量输入变量与输出变量相关与否的指标, 并以增量式的方法确定隐含层节点的规模.在Lorenz、Gas Furnace 和10 组标杆数据上的仿真结果表明了所提出算法的有效性. 该算法不仅可以简化网络结构, 还可以提高网络的泛化性能.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明