hmm模型matlab代码-ml_tools:用Matlab编写的机器学习工具(主要是GMM和HMM)的编译

上传者: 38540782 | 上传时间: 2023-01-09 00:08:22 | 文件大小: 32KB | 文件类型: ZIP
hmm模型matlab代码Mattia的ML工具 高斯混合模型,隐马尔可夫模型和相关算法的另一个Matlab实现。 为学习而构建,用于下面引用的我的HRI'18论文。 该代码使用了Tom Minka的两个库: 快速安装: 光速: 详细: 高斯混合模型(GMM):概率,梯度和熵计算 HMM:HMM的推理和学习(MLE,仅针对多元正态发射概率的MAP) 部分HMM(PHMM):推理和学习(MLE,MAP仅针对多元正态发射概率) 多元正态分布(MVN):MLE,MAP,后验预测,熵计算,梯度评估 多元T学生分布(MVST):用于MVN的后验,拉普拉斯近似 分类分布:推理和学习(MLE,MAP) Dirichlet分布:推理和学习(MLE,Weigthed MLE,熵,KL散度) 数值稳定:对数概率空间实现 参考: 拉卡(Racca),马蒂亚(Mattia)和基尔基·维尔(Kyrki Ville)。 “针对时间任务模型的主动机器人学习。” 2018年ACM / IEEE人机交互国际会议论文集,纽约,纽约,美国,2018年,第123–131页。 汤姆敏卡。 “估计Dirichlet分布。” 技术

文件下载

资源详情

[{"title":"( 29 个子文件 32KB ) hmm模型matlab代码-ml_tools:用Matlab编写的机器学习工具(主要是GMM和HMM)的编译","children":[{"title":"ml_tools-master","children":[{"title":"test_examples","children":[{"title":"mvn_example2.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"active_learning2.m <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"laplace_approx_example1.m <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"gmm_example2.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"categorical_example1.m <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"mvn_example1.m <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"dirichlet_example1.m <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"hmm_example2.m <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"gmm_example1.m <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"active_learning1.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"mvst_example1.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"hmm_example.m <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"GaussianMixtureModel.m <span style='color:#111;'> 6.39KB </span>","children":null,"spread":false},{"title":"support","children":[{"title":"logsumexp.m <span style='color:#111;'> 250B </span>","children":null,"spread":false},{"title":"logsum.m <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":"normalizeLogspace.m <span style='color:#111;'> 556B </span>","children":null,"spread":false},{"title":"Beta.m <span style='color:#111;'> 141B </span>","children":null,"spread":false},{"title":"nearestSPD.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"logBeta.m <span style='color:#111;'> 147B </span>","children":null,"spread":false},{"title":"normalize.m <span style='color:#111;'> 650B </span>","children":null,"spread":false}],"spread":true},{"title":"HiddenMarkovModel.m <span style='color:#111;'> 16.70KB </span>","children":null,"spread":false},{"title":"distributions","children":[{"title":"MultivariateTStudentDistribution.m <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"DirichletDistribution.m <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"CategoricalDistribution.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"MultivariateNormalDistribution.m <span style='color:#111;'> 11.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"README.md <span style='color:#111;'> 47B </span>","children":null,"spread":false}],"spread":true},{"title":"weight_mle_dirichlet","children":[{"title":"weightMask.m <span style='color:#111;'> 367B </span>","children":null,"spread":false},{"title":"dirichlet_weight_fit.m <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明