数据融合matlab代码-sensor-fusion-kalman-filters:扩展的卡尔曼滤波器,适用于自动驾驶汽车,以解释行人运动,汽

上传者: 38539705 | 上传时间: 2021-12-22 22:16:22 | 文件大小: 1.58MB | 文件类型: -
数据融合matlab代码传感器融合模块,为LIDAR / RADAR输入处理实现了扩展的卡尔曼滤波器 卡尔曼滤波器体系结构。 外部装有LIDAR和RADAR等传感器的汽车可以检测到在其范围内移动的物体:例如,传感器可能检测到行人,甚至是自行车。 这是通过计算扩展的卡尔曼滤波器来实现的,该滤波器同时组合了从激光雷达和雷达获得的数据,以测量移动物体的速度和相对于汽车的相对位置。 对于多样性,让我们使用自行车示例逐步了解Kalman滤波算法(上图所示的体系结构),以了解此计算的实际工作原理: 首次测量-过滤器将接收自行车相对于汽车位置的初始测量值。 这些测量将来自雷达或激光雷达传感器。 初始化状态和协方差矩阵-过滤器将基于第一次测量来初始化自行车的位置。 那么汽车将在时间段Δt之后收到另一个传感器测量值。 预测-算法将在时间Δt之后预测自行车的位置。 在Δt之后预测自行车位置的一种基本方法是假设自行车的速度是恒定的。 因此,自行车将具有运动速度Δt 。 在扩展的卡尔曼滤波课中,我们将假设速度是恒定的。 更新-过滤器将“预测的”位置与传感器测量值进行比较。 将预测的位置和测量的位置合并以给出更

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明