rsamatlab代码-EEGAndRNNAnalysis:脑电图和神经网络分析

上传者: 38538312 | 上传时间: 2023-04-06 20:41:21 | 文件大小: 77KB | 文件类型: ZIP
rsa matlab代码人类的脑电图和递归神经网络在语音识别过程中表现出共同的时间动态 论文的分析代码人类脑电图和递归神经网络在语音识别过程中表现出共同的时间动态。 有关运行代码的说明 matlab脚本可以按以下所示的顺序运行。 每个脚本中的路径必须更新为本地系统路径。 FreqDomainRepresentation StimEnvelope_NetOutput_CrossCorr StimEnvelope_NetOutput_EEG_CrossCorr Plot_StimEnvelope_NetOutput_EEG_CrossCorr.m FreqD_StimEnvelope_NetOutput_EEG_CrossCorr StimEnvelope_TrainedNetOutput_xCorr.m StimEnvelope_RandomNetOutput_xCorr.m Plot_StimEnvelope_TrainedOrRandomNetOutput_xCorr.m RSA ShwetasData MakeBeta_for_Network make_userOptions_EE

文件下载

资源详情

[{"title":"( 51 个子文件 77KB ) rsamatlab代码-EEGAndRNNAnalysis:脑电图和神经网络分析","children":[{"title":"EEGAndRNNAnalysis-master","children":[{"title":"ElecWithSigSpearmanCorrcoef.m <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"Plot_RSA_NB_EEG_and_Net.m <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"StimEnvelope_RandomNetOutput_xCorr.m <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"LPFilt_ForEnv_25_FIR_LeastSqu_ord1000.m <span style='color:#111;'> 704B </span>","children":null,"spread":false},{"title":"Plot_Compare_LayerRNN_andEEG_RDMs.m <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"Lib","children":[{"title":"FrequencyDomain.m <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"BPF_Gaussian_fs250_order100.m <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":"BP_filter_fs250_order300.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"get_participant_info.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"editDistance.m <span style='color:#111;'> 663B </span>","children":null,"spread":false},{"title":"assignopts.m <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"linspecer.m <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false},{"title":"Connect2NetStation.m <span style='color:#111;'> 456B </span>","children":null,"spread":false},{"title":"shadedErrorBar.m <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"save_plot.m <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"readsph.m <span style='color:#111;'> 13.47KB </span>","children":null,"spread":false},{"title":"wordEditDistance.m <span style='color:#111;'> 789B </span>","children":null,"spread":false},{"title":"cnctTrials.m <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"Sort_Trials.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"LPF_Gaussian_fs250_order100.m <span style='color:#111;'> 726B </span>","children":null,"spread":false},{"title":"prep_stim.m <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"SimpleAuditoryTargets.m <span style='color:#111;'> 9.97KB </span>","children":null,"spread":false},{"title":"splitSentence.m <span style='color:#111;'> 580B </span>","children":null,"spread":false}],"spread":false},{"title":"Euclidean_RandomNet100.m <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"FrequencyDomain_lstm_output.m <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"Model_RDM.m <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"RDMs_bothEEGandModel.m <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false},{"title":"EEG_RDM.m <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"Plot_pairwiseCorr_RandNet_TraNet_EEGsub.m <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"MakeRDMs_For_All_EEG_Elecs.m <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"MakeBeta_for_Network.m <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"shuffle.m <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"RDM_narrowBandEEG.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"ShwetasData.m <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"MapToScalpValues.m <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"PCA_on_lstm_output.m <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"StimEnvelope_NetOutput_CrossCorr.m <span style='color:#111;'> 10.69KB </span>","children":null,"spread":false},{"title":"Compare_AllEEGelecsRDMs_and_AllNetRDMs.m <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"Stat_StimEnvelope_NetOutput_EEG_CrossCorr.m <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"FreqDomainRepresentation.m <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"PairwiseCorr_RandNetandTrainedNetwithEEGsubjects.m <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"StimEnvelope_NetOutput_EEG_CrossCorr.m <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"StimEnvelope_TrainedNetOutput_xCorr.m <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"Test_euclidean_corr_distances.m <span style='color:#111;'> 205B </span>","children":null,"spread":false},{"title":"RSA_NB_EEG_and_Net.m <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"make_userOptions_EEG_Net.m <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"FreqD_StimEnvelope_NetOutput_EEG_CrossCorr.m <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"Plot_StimEnvelope_NetOutput_EEG_CrossCorr.m <span style='color:#111;'> 10.06KB </span>","children":null,"spread":false},{"title":"Plot_StimEnvelope_TrainedOrRandomNetOutput_xCorr.m <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"RDM_OtherDistanceMeasures.m <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明