将Pytorch模型从CPU转换成GPU的实现方法

上传者: 38537315 | 上传时间: 2021-10-01 12:22:57 | 文件大小: 78KB | 文件类型: -
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了。 最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了“高大上”GPU版本。 看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来。 1. 如何进行迁移 由于我使用的是Pytorch写的模型,网上给出了一个非常简单的转换方式: 对模型和相应的数据进行.cuda()处理。通过这种方式,我们就可以将内存中的数据

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明