基于超图和卷积神经网络的高光谱图像分类

上传者: 38535848 | 上传时间: 2022-05-29 17:52:43 | 文件大小: 7.31MB | 文件类型: PDF
针对高光谱图像数据维数多,光谱信息和空间信息难以提取的问题,提出了一种基于超图和卷积神经网络的分类算法,依据高光谱图像中像素之间的光谱关系和空间关系构建超图;通过超图构建具有谱空联合特征的样本,将其送入卷积神经网络进行特征提取,实现分类。在3种常用的高光谱数据集上进行实验,于Indian Pines数据集上取得了96.63%的总体分类精度。相比于其他算法,所提算法的分类精度高、速度快,而且避免了传统方法在特征提取和融合时出现的不稳定性,验证了其提取的谱空联合信息对高光谱图像具有更强的特征表达能力。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明