基于机器视觉深度学习的电站渗水检测识别技术研究

上传者: 38531630 | 上传时间: 2021-09-07 13:26:18 | 文件大小: 1.67MB | 文件类型: PDF
针对传统的人工检测水库库底排水巡检区域渗水、裂缝的方法存在对工作人员要求过高,检测结果误差过大,检测区域限制过大等缺点,文中提出了一种基于Canny算法与卷积神经网络的裂缝检测识别技术。首先,利用轮式机器人对水电站中可能存在的裂缝进行图像采集,接着借助Canny算法对图像进行预处理并制作成对比数据库,通过数据库训练出能够识别含有裂缝图像的卷积神经网络。最终,将卷积神经网络迁移至机器人的微主板中,使得机器人在巡检过程中可以对渗水、裂缝等异常现象及时报警。实验结果表明,基于本方案的裂缝图像识别率达98.33%,在实际巡检工作中能够发现绝大多数的渗漏危险并给予报警。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明