上传者: 38530415
|
上传时间: 2021-11-26 19:12:36
|
文件大小: 3KB
|
文件类型: -
这段代码实现了一种新的 MLP 神经网络训练方法,称为支持向量神经网络 (SVNN),在工作中提出:O. Ludwig; “以神经网络和级联分类器为重点的快速模式识别非参数方法研究;” 博士论文,科英布拉大学,科英布拉,2012 年。 输入参数是 L 个代表 N 元素输入向量的 N x L 矩阵,行向量 y,其元素是各自的目标类,应该是 -1 或 1 ,以及隐藏神经元的数量nneu。 与 SVM 类似,SVNN 有一个惩罚参数 C,可以在代码的第 16 行设置。 该算法输出 MLP 参数 W1、W2、b1、b2,它们是 MLP 模拟器“sim_NN.m”的输入参数,它还需要测试数据矩阵以及目标向量(如果目标不可用,必须提供空向量)。 “sim_NN.m”输出估计的类别和准确度,acc(当测试目标可用时)。 该代码是为在四核处理器上运行而开发的。 在双核或单核处理器的情况下,第 53 行和第