基于TensorflowLite在移动端实现人声识别

上传者: 38527987 | 上传时间: 2022-07-06 22:27:27 | 文件大小: 891KB | 文件类型: PDF
本文来自于网络,全文讲述了移动端开发人声识别算法优化,针对如何提高人声识别率进行了讲解,希望对大家的学习能有作用。1)当网络较差的情况下会造成较大的延时,带来较差的用户体验。2)当访问量较大的情况下,会大量占用服务端资源。为解决以上两个问题,我们选择在客户端上实现人声识别功能。本文使用机器学习的方法识别人声。采用的框架是谷歌的tensorflowLite框架,该框架跟它的名字一样具有小巧的特点。在保证精度的同时,框架的大小只有300KB左右,且经过压缩后产生的模型是tensorflow模型的四分之一。因此,tensorflowLite框架比较适合在客户端上使用。为了提高人声的识别率,需要提取音

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明