TDFF:一种强鲁棒性的烟雾图像检测算法

上传者: 38526225 | 上传时间: 2021-03-01 17:05:37 | 文件大小: 1.87MB | 文件类型: PDF
烟雾图像检测是及早发现火灾的一种重要手段。针对传统LBP(Local Binary Patterns) 特征与Gabor特征的融合算法存在鲁棒性和检测率低的问题,提出一种TDFF(Triple Multi Feature Local Binary Patterns and Derivative Gabor Feature Fusion)的烟雾检测算法。采用T-MFLBP(Triple Multi Feature Local Binary Patterns)算法分别对像素间不同灰度差值以及非均匀模式中特殊位置的像素进行编码计算,可以捕捉更清晰的纹理特征;然后利用高斯核函数的一阶偏导数提取Gabor特征,从而优化提取图像边缘灰度信息的性能;最后对融合后的特征进行训练,可以提高最终分类的准确性。实验结果表明,TDFF算法具有较强的鲁棒性,烟雾图像的检测率也显著优于未改进的传统算法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明