基于多种群粒子群算法和布谷鸟搜索的联合寻优算法

上传者: 38518518 | 上传时间: 2021-12-14 20:39:08 | 文件大小: 271KB | 文件类型: -
为了提高动态多种群粒子群(DMS-PSO) 算法的全局搜索能力, 将布谷鸟搜索算法(CS) 引入DMS-PSO 算法中, 提出DMS-PSO-CS 算法. 采用中位数聚类算法将整个种群动态划分为若干小种群, 各个小种群作为底层种群通过PSO 算法进行寻优, 再将每个小种群中的最优粒子作为高层种群的粒子通过CS 算法进行深度优化. 将所提出算法应用于CEC 2014 测试函数, 并与CS 算法和其他改进的PSO 算法进行比较. 实验结果表明, 所提出算法能够显著提高全局搜索能力和算法效率.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明