矩阵位移法matlab代码-HMM:基于简单隐马尔可夫模型的中文分词项目

上传者: 38517997 | 上传时间: 2022-05-07 16:47:21 | 文件大小: 6.68MB | 文件类型: ZIP
矩阵位移法matlab代码 #A Simple Hidden Markov Model based Chinese Word Segmentation Project. 为了得到HMM模型,可根据如下步骤进行: 1.利用中文序列、序列对应状态计算转移矩阵,发射矩阵; 2.实现Viterbi算法,估计中文序列对应状态。 In order to obtain the HMM model, the transfer matrix can be calculated by using the Chinese sequence, the sequence corresponding state, the emission matrix, 2. the Viterbi algorithm is realized to estimate the corresponding state of the Chinese sequence. #1. Estimate Transfer Matrix and Emission Matrix 首先,计算转移矩阵、发射矩阵。将Second Internationa

文件下载

资源详情

[{"title":"( 42 个子文件 6.68MB ) 矩阵位移法matlab代码-HMM:基于简单隐马尔可夫模型的中文分词项目","children":[{"title":"HMM-master","children":[{"title":".gitignore <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"matlab","children":[{"title":"hmmestimate.txt <span style='color:#111;'> 414B </span>","children":null,"spread":false},{"title":"pku_train_vec_seq.txt <span style='color:#111;'> 7.88MB </span>","children":null,"spread":false},{"title":"mattester.py <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"te.mat <span style='color:#111;'> 17.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"viterbi.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"neglogviterbi.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"plain","children":[{"title":"pku_test_words.utf8 <span style='color:#111;'> 96.33KB </span>","children":null,"spread":false},{"title":"pku_test_gold.utf8 <span style='color:#111;'> 699.60KB </span>","children":null,"spread":false},{"title":"pku_training.utf8 <span style='color:#111;'> 7.35MB </span>","children":null,"spread":false},{"title":"pku_test_hmm_words.utf8 <span style='color:#111;'> 271.91KB </span>","children":null,"spread":false},{"title":"pku_test.utf8 <span style='color:#111;'> 495.75KB </span>","children":null,"spread":false},{"title":"pku_test_hmm.utf8 <span style='color:#111;'> 672.58KB </span>","children":null,"spread":false},{"title":"pku_training_words.utf8 <span style='color:#111;'> 478.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"recycle","children":[{"title":"compsequence.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"comptest.py <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"compdictdiff.py <span style='color:#111;'> 598B </span>","children":null,"spread":false},{"title":"compstates.py <span style='color:#111;'> 592B </span>","children":null,"spread":false}],"spread":true},{"title":"requirement.txt <span style='color:#111;'> 11B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"pku_dic","children":[{"title":"pku_dict.utf8 <span style='color:#111;'> 13.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"testing","children":[{"title":"comphiddenstate.py <span style='color:#111;'> 1015B </span>","children":null,"spread":false},{"title":"viterbi.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"neglogviterbi.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"compmakewords.py <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"emitstate.py <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"compgoldstates.py <span style='color:#111;'> 999B </span>","children":null,"spread":false},{"title":"comphiddenstateprecision.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"comphiddenstatenovel.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"compevaluation.py <span style='color:#111;'> 684B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"markov.py <span style='color:#111;'> 898B </span>","children":null,"spread":false},{"title":"state","children":[{"title":"hmm","children":[{"title":"pku_test_hmmstate.utf8 <span style='color:#111;'> 170.58KB </span>","children":null,"spread":false},{"title":"pku_train_words_hmmstate.utf8 <span style='color:#111;'> 198.47KB </span>","children":null,"spread":false},{"title":"pku_train_hmmstate.utf8 <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false},{"title":"pku_test_words_hmmstate.utf8 <span style='color:#111;'> 42.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"gold","children":[{"title":"pku_train_states.txt <span style='color:#111;'> 1.76MB </span>","children":null,"spread":false},{"title":"pku_test_words_states.txt <span style='color:#111;'> 42.09KB </span>","children":null,"spread":false},{"title":"pku_test_states.txt <span style='color:#111;'> 170.58KB </span>","children":null,"spread":false},{"title":"pku_train_words_states.txt <span style='color:#111;'> 198.47KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"matlabinputchecker.py <span style='color:#111;'> 359B </span>","children":null,"spread":false},{"title":"vectorizesequence.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明