Python数据分析(9)—-用决策树进行分类

上传者: 38515270 | 上传时间: 2022-03-30 13:41:40 | 文件大小: 103KB | 文件类型: -
在上一篇博文Python数据分析(8)—-用python实现数据分层抽样中,实现了实验数据的抽取,那么在本文中,将用上述抽取到的数据进行实验,也就是用决策树进行分类。 在讲解实际的决策树分类之前,需要介绍一下决策树分类的sklearn中决策树模型参数释义: ''' scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。 (1)回归决策树:DecisionTreeRegressor() (2)分类决策树:DecisionTreeClassifier() ''' from sklearn.tree import DecisionTreeRegressor ''' 回归决策树

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明