Spark随机森林算法原理、源码分析及案例实战

上传者: 38515270 | 上传时间: 2022-01-11 17:55:53 | 文件大小: 908KB | 文件类型: -
本文首先对决策树算法的原理进行分析并指出其存在的问题,进而介绍随机森林算法。同单机环境下的随机森林构造不同的是,分布式环境下的决策树构建如果不进行优化的话,会带来大量的网络IO操作,算法效率将非常低,为此本文给出了随机森林在分布式环境下的具体优化策略,然后对其源码进行分析,最后通过案例介绍随机森林在金融领域内如何进行优质客户的分类。Spark内存计算框架在大数据处理领域内占有举足轻重的地位,2014年Spark风靡IT界,Twitter数据显示Spark已经超越Hadoop、Yarn等技术,成为大数据处理领域中最热门的技术,如图1所示。2015年6月17日,IBM宣布它的“百万数据工程师计划”

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明