matlab离散傅里叶变换平滑代码-DSP-Lab-Codes:数字信号处理实验室-Matlab代码,用于DFT,IDFT,脉冲,采样定理,自

上传者: 38508821 | 上传时间: 2023-03-07 09:33:38 | 文件大小: 501KB | 文件类型: ZIP
matlab离散傅里叶变换平滑代码数字信号处理实验室代码 Matlab代码,用于DFT,IDFT,脉冲,采样定理,自相关,线性和圆形卷积等功能。 DFT 离散傅里叶变换(DFT)是用于数字信号处理中数值计算的主要变换。 它非常广泛地用于频谱分析,快速卷积和许多其他应用。 DFT将N个离散时间样本转换为相同数量的离散频率样本,并定义为 DFT之所以被广泛使用,部分原因是它可以使用快速傅立叶变换(FFT)算法非常有效地进行计算。 代号 逆DFT(IDFT)将N个离散频率样本转换为相同数量的离散时间样本。 IDFT的形式与DFT非常相似,因此也可以使用FFT高效地进行计算。 冲动 在信号处理中,动态系统的脉冲响应或脉冲响应函数(IRF)是动态系统的输出,当出现短暂输入信号(称为脉冲)时。 更一般地,脉冲响应是任何动态系统对某些外部变化的React。 采样定理 连续时间信号可以在其样本中表示,并且可以在采样频率fs大于或等于消息信号的最高频率分量的两倍(即fs≥2fm)时恢复。 自相关 自相关,也称为串行相关,是信号与自身的延迟副本之间的相关关系,它是延迟的函数。 非正式地,这是观察之间的相似

文件下载

资源详情

[{"title":"( 43 个子文件 501KB ) matlab离散傅里叶变换平滑代码-DSP-Lab-Codes:数字信号处理实验室-Matlab代码,用于DFT,IDFT,脉冲,采样定理,自","children":[{"title":"DSP-Lab-Codes-main","children":[{"title":"SAMPLING_THEOREM.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"Screenshots","children":[{"title":"FIR Windows Command Window1.PNG <span style='color:#111;'> 14.33KB </span>","children":null,"spread":false},{"title":"Analog Butterworth Command Window.PNG <span style='color:#111;'> 8.88KB </span>","children":null,"spread":false},{"title":"FIR Windows Output1.PNG <span style='color:#111;'> 27.96KB </span>","children":null,"spread":false},{"title":"FIR Windows Output 2.PNG <span style='color:#111;'> 25.29KB </span>","children":null,"spread":false},{"title":"IIR Chebyshev Output.PNG <span style='color:#111;'> 27.34KB </span>","children":null,"spread":false},{"title":"Analog Chebyshev Command Window.PNG <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"Linear Convolution Command Window1.PNG <span style='color:#111;'> 13.27KB </span>","children":null,"spread":false},{"title":"Cross Correlation Command Window.PNG <span style='color:#111;'> 8.34KB </span>","children":null,"spread":false},{"title":"FIR Sampling Output1.PNG <span style='color:#111;'> 26.97KB </span>","children":null,"spread":false},{"title":"IIR Chebyshev Command Window.PNG <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false},{"title":"FIR Sampling Command Window.PNG <span style='color:#111;'> 13.03KB </span>","children":null,"spread":false},{"title":"Discrete Fourier Transform Output.PNG <span style='color:#111;'> 21.11KB </span>","children":null,"spread":false},{"title":"Auto Correlation Output.PNG <span style='color:#111;'> 21.58KB </span>","children":null,"spread":false},{"title":"FIR Windows Command Window3.PNG <span style='color:#111;'> 15.28KB </span>","children":null,"spread":false},{"title":"Analog Chebyshev Output.PNG <span style='color:#111;'> 26.02KB </span>","children":null,"spread":false},{"title":"Cross Correlation Output.PNG <span style='color:#111;'> 21.54KB </span>","children":null,"spread":false},{"title":"Linear Convolution Output.PNG <span style='color:#111;'> 22.56KB </span>","children":null,"spread":false},{"title":"FIR Windows Command Window4.PNG <span style='color:#111;'> 18.35KB </span>","children":null,"spread":false},{"title":"IIR Butterworth Output.PNG <span style='color:#111;'> 27.48KB </span>","children":null,"spread":false},{"title":"FIR Sampling Output2.PNG <span style='color:#111;'> 21.53KB </span>","children":null,"spread":false},{"title":"Analog Butterworth Output.PNG <span style='color:#111;'> 25.39KB </span>","children":null,"spread":false},{"title":"Linear Convolution Command Window2.PNG <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false},{"title":"FIR Windows Command Window2.PNG <span style='color:#111;'> 14.05KB </span>","children":null,"spread":false},{"title":"Impulse Output.PNG <span style='color:#111;'> 32.64KB </span>","children":null,"spread":false},{"title":"IIR Butterworth Command Window.PNG <span style='color:#111;'> 11.78KB </span>","children":null,"spread":false},{"title":"Inverse Discrete Fourier Transform Output.PNG <span style='color:#111;'> 28.63KB </span>","children":null,"spread":false},{"title":"Sampling Theorem Output.PNG <span style='color:#111;'> 44.70KB </span>","children":null,"spread":false},{"title":"Circular Convolution Command Window.PNG <span style='color:#111;'> 8.66KB </span>","children":null,"spread":false},{"title":"Auto Correlation Command Window.PNG <span style='color:#111;'> 12.88KB </span>","children":null,"spread":false},{"title":"Circular Convolution Output.PNG <span style='color:#111;'> 22.42KB </span>","children":null,"spread":false}],"spread":false},{"title":"IIR_CHEBYSHEV.m <span style='color:#111;'> 683B </span>","children":null,"spread":false},{"title":"CIRCULAR_CONVOLUTION.m <span style='color:#111;'> 668B </span>","children":null,"spread":false},{"title":"ANALOG_BUTTERWORTH.m <span style='color:#111;'> 882B </span>","children":null,"spread":false},{"title":"AUTOCORRELATION.m <span style='color:#111;'> 897B </span>","children":null,"spread":false},{"title":"CIRCULAR CONVOLUTION.m <span style='color:#111;'> 668B </span>","children":null,"spread":false},{"title":"DFT_FUNCTION.m <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"IMPULSE.m <span style='color:#111;'> 553B </span>","children":null,"spread":false},{"title":"INDFT_FUNCTION.m <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"IIR_BUTTERWORTH.m <span style='color:#111;'> 676B </span>","children":null,"spread":false},{"title":"ANALOG_CHEBYSHEV.m <span style='color:#111;'> 882B </span>","children":null,"spread":false},{"title":"LINEAR CONVOLUTION.m <span style='color:#111;'> 879B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明