[{"title":"( 80 个子文件 13.22MB ) matlab聚类kmeans代码-Algorithm:一些经典的算法,有深度学习,智能算法和机器学习算法","children":[{"title":"Algorithm-master","children":[{"title":"遗传算法_求解TSP问题.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"MachineLearning","children":[{"title":"ML_Alg_KMeans.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"ML_Alg_KMeans_0.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"模拟退火.py <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false},{"title":"蚁群算法_求解TSP问题.py <span style='color:#111;'> 9.03KB </span>","children":null,"spread":false},{"title":"模拟退火_求解TSP问题.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":"Example","children":[{"title":"WineQuatilityPredict","children":[{"title":"附件1.xlsx <span style='color:#111;'> 406.01KB </span>","children":null,"spread":false},{"title":"q1.ipynb <span style='color:#111;'> 748.96KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"data_mark.csv <span style='color:#111;'> 204.74KB </span>","children":null,"spread":false},{"title":"q2_MLP.ipynb <span style='color:#111;'> 100.96KB </span>","children":null,"spread":false},{"title":"data_quatily.csv <span style='color:#111;'> 53.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 366B </span>","children":null,"spread":false},{"title":"IntelligentAlgorithm","children":[{"title":"AF_ArtificialFish","children":[{"title":"AF_foodconsistence.m <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"main_AF.m <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"AF_swarm.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"dist.m <span style='color:#111;'> 154B </span>","children":null,"spread":false},{"title":"AF_init.m <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"AF_dist.m <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"AF_prey.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"AF_follow.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"eil51.mat <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"china.mat <span style='color:#111;'> 895.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"BA_BatAlgorithm","children":[{"title":"main_BA.m <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false},{"title":"X. S. Yang, A New Metaheuristic Bat-Inspired Algorithm.pdf <span style='color:#111;'> 617.86KB </span>","children":null,"spread":false},{"title":"verify.m <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"SA_Simulated_Annealing","children":[{"title":"plotcities.m <span style='color:#111;'> 803B </span>","children":null,"spread":false},{"title":"distance.m <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"plotroute.m <span style='color:#111;'> 525B </span>","children":null,"spread":false},{"title":"change.m <span style='color:#111;'> 698B </span>","children":null,"spread":false},{"title":"totaldistance.m <span style='color:#111;'> 445B </span>","children":null,"spread":false},{"title":"main_SA.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"distancematrix.m <span style='color:#111;'> 536B </span>","children":null,"spread":false}],"spread":true},{"title":"PSO_ParticleSwarmOptimization","children":[{"title":"fitness.m <span style='color:#111;'> 408B </span>","children":null,"spread":false},{"title":"plotMap.m <span style='color:#111;'> 694B </span>","children":null,"spread":false},{"title":"Example","children":[{"title":"fun.m <span style='color:#111;'> 233B </span>","children":null,"spread":false},{"title":"PSO4.m <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"PSO0.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"PSO3.m <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"MexicoHatnew.m <span style='color:#111;'> 165B </span>","children":null,"spread":false},{"title":"PSO1.m <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"wchange.m <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"PSO2.m <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"main_PSO.m <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"DeepLearning","children":[{"title":"images","children":[{"title":"LlayerNN_kiank.png <span style='color:#111;'> 278.56KB </span>","children":null,"spread":false},{"title":"mn_backward.png <span style='color:#111;'> 217.55KB </span>","children":null,"spread":false},{"title":"model_architecture_kiank.png <span style='color:#111;'> 158.94KB </span>","children":null,"spread":false},{"title":"relu.png <span style='color:#111;'> 35.10KB </span>","children":null,"spread":false},{"title":"model_architecture2.png <span style='color:#111;'> 216.91KB </span>","children":null,"spread":false},{"title":"image1.png <span style='color:#111;'> 259.48KB </span>","children":null,"spread":false},{"title":"LogReg_kiank.png <span style='color:#111;'> 187.10KB </span>","children":null,"spread":false},{"title":"n_model_backward.png <span style='color:#111;'> 761.16KB </span>","children":null,"spread":false},{"title":"image2.png <span style='color:#111;'> 150.82KB </span>","children":null,"spread":false},{"title":"2layerNN_kiank.png <span style='color:#111;'> 254.53KB </span>","children":null,"spread":false},{"title":"cat_in_iran.jpg <span style='color:#111;'> 587.00KB </span>","children":null,"spread":false},{"title":"imvectorkiank.png <span style='color:#111;'> 372.99KB </span>","children":null,"spread":false},{"title":"linearback_kiank.png <span style='color:#111;'> 55.52KB </span>","children":null,"spread":false},{"title":"my_image.jpg <span style='color:#111;'> 621.36KB </span>","children":null,"spread":false},{"title":"nm_backward.png <span style='color:#111;'> 870.66KB </span>","children":null,"spread":false},{"title":"NlayerNN.png <span style='color:#111;'> 482.43KB </span>","children":null,"spread":false},{"title":"gargouille.jpg <span style='color:#111;'> 302.91KB </span>","children":null,"spread":false},{"title":"la_defense.jpg <span style='color:#111;'> 331.71KB </span>","children":null,"spread":false},{"title":"structure.png <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"imvector.png <span style='color:#111;'> 198.13KB </span>","children":null,"spread":false},{"title":"c1.jpg <span style='color:#111;'> 88.56KB </span>","children":null,"spread":false},{"title":"backprop_kiank.png <span style='color:#111;'> 100.50KB </span>","children":null,"spread":false},{"title":"my_image2.jpg <span style='color:#111;'> 92.23KB </span>","children":null,"spread":false},{"title":"final outline.png <span style='color:#111;'> 556.92KB </span>","children":null,"spread":false},{"title":"2layerNN.png <span style='color:#111;'> 420.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"DP_Alg_NeuralNetwork_N.py <span style='color:#111;'> 17.52KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"train_catvnoncat.h5 <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"test_catvnoncat.h5 <span style='color:#111;'> 602.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"DP_Alg_NeuralNetwork_1.py <span style='color:#111;'> 13.84KB </span>","children":null,"spread":false},{"title":"DP_Alg_Logistic.py <span style='color:#111;'> 11.58KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"遗传算法_求解TSP问题.ipynb <span style='color:#111;'> 51.35KB </span>","children":null,"spread":false},{"title":"遗传算法_函数极大值.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"遗传算法_函数极大值.ipynb <span style='color:#111;'> 82.48KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]