BP网络matlab数据预测代码-DET-AI:建立了两阶段反向传播人工神经网络(BP-NN)和非线性自回归外生(NARX)模型来分析沼气升级

上传者: 38503483 | 上传时间: 2021-11-23 19:45:40 | 文件大小: 59KB | 文件类型: -
BP网络matlab数据预测代码通过机器学习进行DET预测 随着废水处理中数据的增加,数据驱动的机器学习模型可用于对生物过程和复杂React进行建模。 但是,很少有数据驱动的模型可用于模拟微生物电解池(MEC),而传统模型过于模棱两可,无法理解其机理。 在这项研究中,首先开发了一种新的通用数据驱动的两阶段模型,该模型通过直接电子传输(DET)通过生物阴极MEC的原位沼气升级预测CH 4的产生,该模型称为NARX-BP混合神经网络。 与传统的一阶段模型相比,该模型可以很好地预测通过DET产生的甲烷的性能(R 2和MES分别为0.918和6.52×10 -2 ),并揭示了沼气升级的机理,用于新的系统模型该方法可以通过输入重要的中间变量来提高通用性和适用性。 此外,该模型通常可用于支持厌氧消化或更复杂系统的长期预测和最佳操作。 1,需求环境 Matlab 2017b 2.主要 该项目包括NARX-BP混合神经网络的模型和代码。 3.出版 通过直接电子转移估算微生物电​​解池中原位沼气的升级:基于NARX-BP混合神经网络的两阶段机器学习模型 该研究的论文尚不可用。 4.版本 V.0.0.1

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明