DFT的matlab源代码-surface-defect-detection:缺陷检测文献记录

上传者: 38502916 | 上传时间: 2022-06-07 20:00:52 | 文件大小: 66.25MB | 文件类型: ZIP
DFT的matlab源代码 surface-defect-detection 分享一些表面缺陷检测的文章,主要检测对象是:金属表面、LCD屏、建筑、输电线等缺陷或异常检物。方法以分类方法、检测方法、重构方法、生成方法为主。电子版论文放在了paper文件的对应日期文件下。 2019.01 [1]CNN做分类 论文题目:A fast and robust convolutional neural network-based defect detection model in product quality control 摘要:The fast and robust automated quality visual inspection has received increasing attention in the product quality control for production efficiency. To effectively detect defects in products, many methods focus on the handcrafted optica

文件下载

资源详情

[{"title":"( 26 个子文件 66.25MB ) DFT的matlab源代码-surface-defect-detection:缺陷检测文献记录","children":[{"title":"surface-defect-detection-master","children":[{"title":"paper","children":[{"title":"2019.10","children":[{"title":"SDD-CNN Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection.pdf <span style='color:#111;'> 4.81MB </span>","children":null,"spread":false},{"title":"Segmentation-based deep-learning approach for surface-defect detection.pdf <span style='color:#111;'> 4.40MB </span>","children":null,"spread":false},{"title":"A semi-supervised convolutional neural network-based method for steel.pdf <span style='color:#111;'> 2.03MB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.01","children":[{"title":"Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types.pdf <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"Automatic_Metallic_Surface_Defect_Detection_and_Re.pdf <span style='color:#111;'> 3.90MB </span>","children":null,"spread":false},{"title":"A fast and robust convolutional neural network-based defect detection model in product quality control.pdf <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces.pdf <span style='color:#111;'> 3.18MB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.04","children":[{"title":"Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity..pdf <span style='color:#111;'> 4.81MB </span>","children":null,"spread":false},{"title":"Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model .pdf <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network .pdf <span style='color:#111;'> 4.33MB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.03","children":[{"title":"Tiny surface defect inspection of electronic passive components using discrete cosine transform decomposition and cumulative sum techniques.pdf <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"Surface Defect Saliency of Magnetic Tile.pdf <span style='color:#111;'> 1.69MB </span>","children":null,"spread":false},{"title":"The phase only transform for unsupervised surface defect detection.pdf <span style='color:#111;'> 2.23MB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.02","children":[{"title":"Defects Detection Based on Deep Learning and Transfer Learning.pdf <span style='color:#111;'> 662.85KB </span>","children":null,"spread":false},{"title":"Deep Active Learning for Civil Infrastructure Defect detection and clssification.pdf <span style='color:#111;'> 988.37KB </span>","children":null,"spread":false},{"title":"Defect Detection of Mobile Phone Surface based on convlution nerual networks.pdf <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.11","children":[{"title":"Unsupervised fabric defect detection based on a deep convolutional generative adversarial network.pdf <span style='color:#111;'> 3.18MB </span>","children":null,"spread":false},{"title":"A High-Efficiency Fully Convolutional Networks for Pixel-Wise Surface Defect Detection.pdf <span style='color:#111;'> 11.07MB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.06","children":[{"title":"YOLO for steel detection.pdf <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"Surface defect classification of steels with a new semi-supervised learning.pdf <span style='color:#111;'> 2.15MB </span>","children":null,"spread":false},{"title":"GANomaly Semi-Supervised Anomaly Detection via Adversarial Training.pdf <span style='color:#111;'> 3.64MB </span>","children":null,"spread":false},{"title":"A Surface Defect Detection Method Based on Positive Samples.pdf <span style='color:#111;'> 665.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"2019.05","children":[{"title":"2.pdf <span style='color:#111;'> 5.04MB </span>","children":null,"spread":false},{"title":"1.pdf <span style='color:#111;'> 808.61KB </span>","children":null,"spread":false},{"title":"3.pdf <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 37.10KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明