基于奇异值分解(SVD)的图片压缩实践

上传者: 38499336 | 上传时间: 2021-12-19 20:22:39 | 文件大小: 436KB | 文件类型: -
文章目录1. 前言2. 原理简介2.1 SVD定义3. 实践代码4. 参考文献 1. 前言 数字图片在计算机中是以矩阵形式存储的。所以可以通过矩阵理论和矩阵算法对数字图像进行分析和处理。本文通过对图片进行SVD压缩,对不同的参数下的压缩效果进行对比。 SVD概念可以参考:《统计学习方法》–奇异值分解(Singular Value Decomposition,SVD) 2. 原理简介 彩色图片有3个图层,RGB(红、绿、蓝)也就是矩阵的一个位置上存储了3个基色的数值,由3个基色混合成不同的色彩。 通过对3个图层矩阵,分别进行SVD近似,SVD奇异值是唯一的,可以取前 k 个最大的奇异值进行近似表

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明