YOLOv3目标检测实战:网络模型改进方法

上传者: 26833939 | 上传时间: 2021-12-13 21:28:31 | 文件大小: 6.77MB | 文件类型: -
YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将学习YOLOv3实现darknet的网络模型改进方法。具体包括:? PASCAL VOC数据集的整理、训练与测试?? Eclipse IDE的安装与使用?? 改进1:不显示指定类别目标的方法 (增加功能)?? 改进2:合并BN层到卷积层 (加快推理速度)?? 改进3:使用GIoU指标和损失函数 (提高检测精度)?? 改进4:tiny YOLOv3 (简化网络模型)? AlexeyAB/darknet项目介绍除本课程《YOLOv3目标检测实战:网络模型改进方法》外,本人推出了有关YOLOv3目标检测的系列课程,请关注该系列的其它课程,包括:《YOLOv3目标检测实战:训练自己的数据集》《YOLOv3目标检测实战:交通标志识别》《YOLOv3目标检测:原理与源码解析》在学习课程《YOLOv3目标检测实战:网络模型改进方法》前,建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》和课程《YOLOv3目标检测实战:交通标志识别》之一和课程《YOLOv3目标检测:原理与源码解析》。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明