李雅普诺夫稳定性理论的应用-matlab图像处理函数汇总

上传者: 26781975 | 上传时间: 2022-02-18 13:47:17 | 文件大小: 3.21MB | 文件类型: -
三、李雅普诺夫稳定性理论的应用 李雅普诺夫稳定性理论在系统稳定性分析和系统设计中得到较多的应用。下面讨论李雅 普诺夫第二方法在线性系统稳定性分析中的应用。 设系统的状态方程为 �X = AX ( 2 .1 15) 式中 X为 n维状态向量 ; A为 n× n维常数矩阵。选下列二次型函数为可能的李雅普诺夫函数 V ( X) = X T PX ( 2 .1 16) 式中 P为 n× n对称正定矩阵 ,求 V 对时间 t的导数 �V = dV d t = �X T PX + X T P�X = ( AX ) T PX + X T PAX = X T ( A T P + PA ) X ( 2 .1 17) 由于 V ( X ) 取正定 ,如果要使系统渐近稳定 ,必须使�V ( X ) 为负定 ,即要求 �V = - X T QX ( 2 .1 18) 式中 - Q = A T P + PA ( 2 .1 19) 因此使一个线性系统稳定的充分条件是 Q必须为正定。可先选取一个正定 Q阵 , 然后用式 (2 .1 18) 求解 P,再根据 P是否正定来判定系统的渐近稳定性。这比选一个正定的 P,再检查 Q阵是否也是正定要方便得多。P为正定是一个必要条件。为方便计 , Q阵常取为单位阵 I ,此时 P的元素可按下式确定 A T P + PA = - I ( 2 .1 20) 例 2 .1 1 设系统状态方程为 �X = AX 式中 —9—

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明