遗传算法的基本流程图-image processing for embedded devices

上传者: 26779013 | 上传时间: 2021-11-22 22:15:45 | 文件大小: 3.89MB | 文件类型: -
2.2 基本遗传算法 基本遗传算法(也称标准遗传算法或简单遗传算法,Simple Genetic Algorithm,SGA) 是一 种群体型操作,该操作以群体中的所有个体为对象,只使用基本遗传算子(Genetic Operator): 选择算子(Selection Operator)、交叉算子(Crossover Operator)和变异算子(Mutation Operator),其 遗传进化操作过程简单,容易理解,是其它一些遗传算法的基础,它不仅给各种遗传算法提供 了一个基本框架,同时也具有一定的应用价值。选择、交叉和变异是遗传算法 3 个主要操作算 子,它们构成了所谓的遗传操作,使遗传算法具有了其它传统方法没有的特点。 2.2.1 基本遗传算法的数学模型 基本遗传算法可表示为: ),,,,,,,( 0 TΦMPECSGA = (2.1) 式中:C ——个体的编码方法; E ——个体适应度评价函数; 0 P ——初始种群; M ——种群大小; Φ——选择算子; ——交叉算子;  ——变异算子; T ——遗传运算终止条件。 图 2.3 为基本遗传算法的流程图。 2.2.2 基本遗传算法的步骤 1.染色体编码与解码 基本遗传算法使用固定长度的二进制符号串来表示群体中的个体,其等位基因是由二值 {0,1}所组成。初始群体中各个个体的基因可用均匀分布的随机数来生成。例如: X=100111001000101101 就可表示一个个体,该个体的染色体长度是 n=18。 编码和初始种群的生成 种群中个体适应度的检测评估 选择 交叉 变异 图 2.3 遗传算法的基本流程图

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明