Two dimensional spline interpolation algorithms

上传者: u012149992 | 上传时间: 2022-09-08 14:25:03 | 文件大小: 6MB | 文件类型: PDF
Wellesley, Massachusetts, А К Peters, Ltd., 1995. - 308 p., ISBN 1-56881-017-2. Library of Congress Cataloging-in-Publication Data.This is the continuation of One Dimensional Spline Interpolation Algorithms to two dimensions as mentioned in the postscript to that book. We again take the point of view that the nodes (only in the plane) and the values to be interpolated are fixed ahead of time and that no information on a possible underlying function is available.Contents: Preface. Spline Interpolation on Rectangular Grids. Polynomial Interpolation. Rectangular Grids and Product Interpolation. The Lagrange Form of the Bivariate Interpolating Polynomial. Polynomial Interpolation on Special Triangular Grids. Bilinear Spline Interpolation. Searching a Rectangular Grid. Bilinear Interpolation on Rectangles. Biquadratic Spline Interpolants. Knots the Same as Nodes. Knots Different from Nodes. Shape Preservation. A Local Quadratic Method of Interpolation. Bicubic Spline Interpolation. Bicubic Spline Interpolation on Rectangular Grids. Parametric Bicubic Spline Interpolation. Bicubic Hermite Spline Interpolation. Semi-Bicubic Hermite Spline Interpolation. Shape Preservation. Biquadratic Histosplines. Birational Spline Interpolants. Birational Spline Interpolants on Rectangular Grids. Birational Histosplines. Spline Interpolation for Arbitrarily Distributed Points. Global Methods without Triangulation. Existence Problems and Goal Setting. Shepard's Method. Hardy's Multiquadrics. Triangulations. Linear Spline Interpolants over Triangulations. The Approximation of First Partial Derivatives. Quadratic Spline Interpolants over Triangulations. Cubic Spline Interpolation over Triangulations. C1 Spline Interpolation of Degree Five on Triangulations. Postscript. A. Appendix. B. List of Subroutines. Bibliography. Index.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明