光场图像视图合成

上传者: u011370588 | 上传时间: 2021-05-16 17:10:02 | 文件大小: 14.35MB | 文件类型: ZIP
利用深度卷积网路实现光场图像的视图合成,代码利用matlab编写,使用matconvnet工具GPU实现。

文件下载

资源详情

[{"title":"( 46 个子文件 14.35MB ) 光场图像视图合成","children":[{"title":"SIGGRAPHAsia16_ViewSynthesis_Code_v2.0","children":[{"title":"Results","children":null,"spread":false},{"title":"Test.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"Train.m <span style='color:#111;'> 207B </span>","children":null,"spread":false},{"title":"TrainingData","children":[{"title":"Training","children":null,"spread":false},{"title":"Test","children":null,"spread":false}],"spread":true},{"title":"Libraries","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"Scenes","children":null,"spread":false},{"title":"Functions","children":[{"title":"InitParam.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"GetPatches.m <span style='color:#111;'> 479B </span>","children":null,"spread":false},{"title":"ReadTrainingData.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"ComputeTrainingExamples.m <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"GetTestError.m <span style='color:#111;'> 338B </span>","children":null,"spread":false},{"title":"EvaluateSystem.m <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"LoadNetworks.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"GetImgPos.m <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":"ComputePSNR.m <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"CropImg.m <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"WarpImages.m <span style='color:#111;'> 458B </span>","children":null,"spread":false},{"title":"PrepareDepthFeatures.m <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"WriteTestExamples.m <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"CreateNet.m <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"SaveHDF.m <span style='color:#111;'> 470B </span>","children":null,"spread":false},{"title":"CorrespResponse.m <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"WriteError.m <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"AdjustTone.m <span style='color:#111;'> 207B </span>","children":null,"spread":false},{"title":"PrepareTestData.m <span style='color:#111;'> 1002B </span>","children":null,"spread":false},{"title":"TestDuringTraining.m <span style='color:#111;'> 789B </span>","children":null,"spread":false},{"title":"ssim.m <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"ReadIllumImages.m <span style='color:#111;'> 813B </span>","children":null,"spread":false},{"title":"MakeDir.m <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"PadWithOne.m <span style='color:#111;'> 107B </span>","children":null,"spread":false},{"title":"GetImgInd.m <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"InitWeight.m <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"PrepareColorFeatures.m <span style='color:#111;'> 535B </span>","children":null,"spread":false},{"title":"InitLayers.m <span style='color:#111;'> 270B </span>","children":null,"spread":false},{"title":"UpdateNet.m <span style='color:#111;'> 850B </span>","children":null,"spread":false},{"title":"WarpAllImages.m <span style='color:#111;'> 525B </span>","children":null,"spread":false},{"title":"DefocusResponse.m <span style='color:#111;'> 121B </span>","children":null,"spread":false},{"title":"PrepareTrainingData.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"GetNumPatches.m <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"PrepareColorFeaturesGrad.m <span style='color:#111;'> 376B </span>","children":null,"spread":false},{"title":"TrainSystem.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"ConvertLayers.m <span style='color:#111;'> 692B </span>","children":null,"spread":false},{"title":"EvaluateNet.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"SynthesizeNovelViews.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"WriteTrainingExamples.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"GetFolderContent.m <span style='color:#111;'> 353B </span>","children":null,"spread":false},{"title":"ComputeTestExamples.m <span style='color:#111;'> 1000B </span>","children":null,"spread":false}],"spread":false},{"title":"PrepareData.m <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"TrainedNetworks","children":[{"title":"Net.mat <span style='color:#111;'> 14.33MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明