唇语识别系统使用机器视觉技术源码lip-reading-deeplearning-master

上传者: sunwindroom | 上传时间: 2021-03-02 20:13:47 | 文件大小: 84.98MB | 文件类型: ZIP
唇语识别系统使用机器视觉技术,从图像中连续识别出人脸,判断其中正在说话的人,提取此人连续的口型变化特征,随即将连续变化的特征输入到唇语识别模型中,识别出讲话人口型对应的发音,随后根据识别出的发音,计算出可能性最大的自然语言语句。

文件下载

资源详情

[{"title":"( 85 个子文件 84.98MB ) 唇语识别系统使用机器视觉技术源码lip-reading-deeplearning-master","children":[{"title":"lip-reading-deeplearning-master","children":[{"title":"dlib <span style='color:#111;'> 5B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"lip_tracking_demo.sh <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"README.rst <span style='color:#111;'> 11.31KB </span>","children":null,"spread":false},{"title":"code","children":[{"title":"speech-input","children":[{"title":"file_path.txt <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"Audio","children":[{"title":"subject","children":[{"title":"sound.wav <span style='color:#111;'> 134.45KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"input_feature.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"lip_tracking","children":[{"title":"VisualizeLip.py <span style='color:#111;'> 7.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"training_evaluation","children":[{"title":"test.py <span style='color:#111;'> 21.79KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 27.09KB </span>","children":null,"spread":false},{"title":"roc_curve","children":[{"title":"PlotROC.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"calculate_roc.py <span style='color:#111;'> 631B </span>","children":null,"spread":false},{"title":"PlotHIST.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"PlotROC.pyc <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"PlotPR.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"PlotHIST.pyc <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"PlotPR.pyc <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"calculate_roc.pyc <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"nets","children":[{"title":"__init__.py~ <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"nets_factory.py <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"lipread_speech.py <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"lipread_mouth.py <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"auxiliary","children":[{"title":"losses.py <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"losses.pyc <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"run.sh <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":".github","children":[{"title":"FUNDING.yml <span style='color:#111;'> 18B </span>","children":null,"spread":false}],"spread":true},{"title":"system_requirements.txt <span style='color:#111;'> 39B </span>","children":null,"spread":false},{"title":"CONTRIBUTING.rst <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"_config.yml <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"readme_images","children":[{"title":"conv_gif.gif <span style='color:#111;'> 115.63KB </span>","children":null,"spread":false},{"title":"1.gif <span style='color:#111;'> 76.41KB </span>","children":null,"spread":false},{"title":"Speech_GIF.gif <span style='color:#111;'> 24.40KB </span>","children":null,"spread":false},{"title":"processing.gif <span style='color:#111;'> 67.93KB </span>","children":null,"spread":false},{"title":"liptrackingdemo.png <span style='color:#111;'> 41.91KB </span>","children":null,"spread":false},{"title":"DNN-Coupled.png <span style='color:#111;'> 68.38KB </span>","children":null,"spread":false},{"title":"convergence-speed.png <span style='color:#111;'> 28.69KB </span>","children":null,"spread":false},{"title":"processing-pipeline.png <span style='color:#111;'> 43.11KB </span>","children":null,"spread":false},{"title":"3.gif <span style='color:#111;'> 120.32KB </span>","children":null,"spread":false},{"title":"2.gif <span style='color:#111;'> 56.04KB </span>","children":null,"spread":false},{"title":"accuracy-bar-pairselection.png <span style='color:#111;'> 30.04KB </span>","children":null,"spread":false},{"title":"lip_motion.jpg <span style='color:#111;'> 102.38KB </span>","children":null,"spread":false}],"spread":false},{"title":"index.md <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'> 10.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"readme_images","children":[{"title":"conv_gif.gif <span style='color:#111;'> 115.63KB </span>","children":null,"spread":false},{"title":"1.gif <span style='color:#111;'> 76.41KB </span>","children":null,"spread":false},{"title":"Speech_GIF.gif <span style='color:#111;'> 24.40KB </span>","children":null,"spread":false},{"title":"processing.gif <span style='color:#111;'> 67.93KB </span>","children":null,"spread":false},{"title":"liptrackingdemo.png <span style='color:#111;'> 41.91KB </span>","children":null,"spread":false},{"title":"follow-twitter.gif <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"DNN-Coupled.png <span style='color:#111;'> 68.38KB </span>","children":null,"spread":false},{"title":"convergence-speed.png <span style='color:#111;'> 28.69KB </span>","children":null,"spread":false},{"title":"processing-pipeline.png <span style='color:#111;'> 43.11KB </span>","children":null,"spread":false},{"title":"3.gif <span style='color:#111;'> 120.32KB </span>","children":null,"spread":false},{"title":"2.gif <span style='color:#111;'> 56.04KB </span>","children":null,"spread":false},{"title":"accuracy-bar-pairselection.png <span style='color:#111;'> 30.04KB </span>","children":null,"spread":false},{"title":"lip_motion.jpg <span style='color:#111;'> 102.38KB </span>","children":null,"spread":false},{"title":"demo","children":[{"title":"asciicast-129202.json <span style='color:#111;'> 53.76KB </span>","children":null,"spread":false},{"title":"asciicast-129203.json <span style='color:#111;'> 117.94KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"install_dependencies.sh <span style='color:#111;'> 96B </span>","children":null,"spread":false},{"title":"results","children":[{"title":"TRAIN_CNN_3D","children":[{"title":"train_logs-62.data-00000-of-00001 <span style='color:#111;'> 11.83MB </span>","children":null,"spread":false},{"title":"train_logs-62.index <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"train_logs-62.meta <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"test_logs","children":[{"title":"events.out.tfevents.1524427861.sina-Alienware-Area-51-R5 <span style='color:#111;'> 3.03MB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1524427907.sina-Alienware-Area-51-R5 <span style='color:#111;'> 3.03MB </span>","children":null,"spread":false}],"spread":false},{"title":"train_logs","children":[{"title":"events.out.tfevents.1524427609.sina-Alienware-Area-51-R5 <span style='color:#111;'> 6.40MB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1524427706.sina-Alienware-Area-51-R5 <span style='color:#111;'> 6.44MB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1524427440.sina-Alienware-Area-51-R5 <span style='color:#111;'> 3.23MB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1524427494.sina-Alienware-Area-51-R5 <span style='color:#111;'> 6.42MB </span>","children":null,"spread":false}],"spread":false},{"title":"checkpoint <span style='color:#111;'> 83B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".travis.yml <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"run_train_test.sh <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"python_requirements.txt <span style='color:#111;'> 107B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"shape_predictor_68_face_landmarks.dat <span style='color:#111;'> 95.08MB </span>","children":null,"spread":false},{"title":"sample_video.mp4 <span style='color:#111;'> 735.04KB </span>","children":null,"spread":false},{"title":"data <span style='color:#111;'> 5B </span>","children":null,"spread":false}],"spread":false},{"title":"activation <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"training_requirements.txt <span style='color:#111;'> 59B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • weixin_46288329 :
    请问这个代码怎么用啊,有具体的流程吗?谢谢啊
    2021-03-06

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明