思典-粒子群优化Matlab工具箱

上传者: stereohomology | 上传时间: 2019-12-21 21:10:14 | 文件大小: 46KB | 文件类型: zip
http://www.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization Description Previously titled "Another Particle Swarm Toolbox" Introduction Particle swarm optimization (PSO) is a derivative-free global optimum solver. It is inspired by the surprisingly organized behaviour of large groups of simple animals, such as flocks of birds, schools of fish, or swarms of locusts. The individual creatures, or "particles", in this algorithm are primitive, knowing only four simple things: 1 & 2) their own current location in the search space and fitness value, 3) their previous personal best location, and 4) the overall best location found by all the particles in the "swarm". There are no gradients or Hessians to calculate. Each particle continually adjusts its speed and trajectory in the search space based on this information, moving closer towards the global optimum with each iteration. As seen in nature, this computational swarm displays a remarkable level of coherence and coordination despite the simplicity of its individual particles. Ease of Use If you are already using the Genetic Algorithm (GA) included with MATLAB's Global Optimization Toolbox, then this PSO toolbox will save you a great deal of time. It can be called from the MATLAB command line using the same syntax as the GA, with some additional options specific to PSO. This will allow a high degree of code re-usability between the PSO toolbox and the GA toolbox. Certain GA-specific parameters such as cross-over and mutation functions will obviously not be applicable to the PSO algorithm. However, many of the commonly used options for the Genetic Algorithm Toolbox may be used interchangeably with PSO since they are both iterative population-based solvers. See >> help pso (from the ./psopt directory) for more details. Features * NEW: support for distributed computing using MATLAB's parallel computing toolbox. * Full support for bounded, linear, and nonlinear constraints. *

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明