[{"title":"( 226 个子文件 13.26MB ) Kenlm、ConvSeq2Seq等多种模型的文本纠错,并在SigHAN数据集评估各模型的效果,开箱即用","children":[{"title":"CITATION.cff <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"en.json.gz <span style='color:#111;'> 575.11KB </span>","children":null,"spread":false},{"title":"framework_context.jpeg <span style='color:#111;'> 513.37KB </span>","children":null,"spread":false},{"title":"we_image.jpeg <span style='color:#111;'> 216.03KB </span>","children":null,"spread":false},{"title":"wechat.jpeg <span style='color:#111;'> 40.15KB </span>","children":null,"spread":false},{"title":"macbert_result.jpg <span style='color:#111;'> 769.53KB </span>","children":null,"spread":false},{"title":"macbert_network.jpg <span style='color:#111;'> 114.47KB </span>","children":null,"spread":false},{"title":"macbert_mask_strategies.jpg <span style='color:#111;'> 94.44KB </span>","children":null,"spread":false},{"title":"eval_corpus.json <span style='color:#111;'> 209.61KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 38.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"README_EN.md <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.51KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 801B </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"eng_correction.md <span style='color:#111;'> 353B </span>","children":null,"spread":false},{"title":"feature-request.md <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"bug-report.md <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"usage-question.md <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"基于深度学习的中文文本自动校对研究与实现.pdf <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false},{"title":"error_type.png <span style='color:#111;'> 687.41KB </span>","children":null,"spread":false},{"title":"RTD.png <span style='color:#111;'> 507.15KB </span>","children":null,"spread":false},{"title":"long_text.png <span style='color:#111;'> 454.85KB </span>","children":null,"spread":false},{"title":"bert_result.png <span style='color:#111;'> 424.70KB </span>","children":null,"spread":false},{"title":"wechat_zhifu.png <span style='color:#111;'> 286.23KB </span>","children":null,"spread":false},{"title":"peoplecorpus.png <span style='color:#111;'> 211.73KB </span>","children":null,"spread":false},{"title":"short_result.png <span style='color:#111;'> 162.91KB </span>","children":null,"spread":false},{"title":"macbert_network_old.png <span style='color:#111;'> 155.75KB </span>","children":null,"spread":false},{"title":"arch1.png <span style='color:#111;'> 135.62KB </span>","children":null,"spread":false},{"title":"convseq2seq_ret.png <span style='color:#111;'> 123.70KB </span>","children":null,"spread":false},{"title":"hf.png <span style='color:#111;'> 108.66KB </span>","children":null,"spread":false},{"title":"ernie_result.png <span style='color:#111;'> 105.23KB </span>","children":null,"spread":false},{"title":"erweima.png <span style='color:#111;'> 93.29KB </span>","children":null,"spread":false},{"title":"docker.png <span style='color:#111;'> 69.50KB </span>","children":null,"spread":false},{"title":"pycorrector.png <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"zh_wiki.py <span style='color:#111;'> 139.67KB </span>","children":null,"spread":false},{"title":"seq2seq_model.py <span style='color:#111;'> 49.17KB </span>","children":null,"spread":false},{"title":"modeling_ernie.py <span style='color:#111;'> 29.89KB </span>","children":null,"spread":false},{"title":"detector.py <span style='color:#111;'> 17.30KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 13.42KB </span>","children":null,"spread":false},{"title":"get_file.py <span style='color:#111;'> 12.29KB </span>","children":null,"spread":false},{"title":"corrector.py <span style='color:#111;'> 11.90KB </span>","children":null,"spread":false},{"title":"convseq2seq.py <span style='color:#111;'> 11.89KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.78KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.77KB </span>","children":null,"spread":false},{"title":"tokenizing_ernie.py <span style='color:#111;'> 9.02KB </span>","children":null,"spread":false},{"title":"evaluate_util.py <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false},{"title":"proper_corrector.py <span style='color:#111;'> 8.33KB </span>","children":null,"spread":false},{"title":"infer.py <span style='color:#111;'> 8.21KB </span>","children":null,"spread":false},{"title":"langconv.py <span style='color:#111;'> 7.89KB </span>","children":null,"spread":false},{"title":"macbert_corrector.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"fix_bug.py <span style='color:#111;'> 7.67KB </span>","children":null,"spread":false},{"title":"seq2seq.py <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 7.46KB </span>","children":null,"spread":false},{"title":"t5_corrector.py <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"model_args.py <span style='color:#111;'> 6.56KB </span>","children":null,"spread":false},{"title":"lr_scheduler.py <span style='color:#111;'> 6.48KB </span>","children":null,"spread":false},{"title":"softmaskedbert4csc.py <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"ngram_util.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"tokenizer.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"ner_error_test.py <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"predict_sighan.py <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false},{"title":"ernie_corrector.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false},{"title":"en_spell.py <span style='color:#111;'> 5.69KB </span>","children":null,"spread":false},{"title":"infer.py <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"data_reader.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"error_correct_test.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"evaluate_models.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"detector_test.py <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"kenlm_test.py <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"infer.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"text_utils.py <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"sighan_evaluate.py <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"seq2seq_utils.py <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"electra_corrector.py <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"deepcontext_demo.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"data_reader.py <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"seq2seq_corrector.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"test_confusion.py <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"defaults.py <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"bert_corrector.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"macbert_corrector_probs_test.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]