svr的matlab工具箱

上传者: shiyi2011 | 上传时间: 2019-12-21 21:04:58 | 文件大小: 1.09MB | 文件类型: rar
支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。

文件下载

资源详情

[{"title":"( 44 个子文件 1.09MB ) svr的matlab工具箱","children":[{"title":"OSU_SVM3.00","children":[{"title":"mexSVMTrain.dll <span style='color:#111;'> 72.00KB </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"mexSVMTrain.mexhp7 <span style='color:#111;'> 124.31KB </span>","children":null,"spread":false},{"title":"SVMClassifier.mat <span style='color:#111;'> 338.49KB </span>","children":null,"spread":false},{"title":"u_LinearSVC.m <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"mexSVMClass.mexhp7 <span style='color:#111;'> 124.31KB </span>","children":null,"spread":false},{"title":"one_RbfSVC.m <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"mexSVMTrain.mexsol <span style='color:#111;'> 226.40KB </span>","children":null,"spread":false},{"title":"SVMTest.m <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false},{"title":"SVMTrain.m <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"mexSVMClass.dll <span style='color:#111;'> 60.00KB </span>","children":null,"spread":false},{"title":"SVMPlot2.m <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"mexSVMClass.mexsol <span style='color:#111;'> 227.47KB </span>","children":null,"spread":false},{"title":"SVMClass.m <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"demo","children":[{"title":"osusvmdemo.m <span style='color:#111;'> 612B </span>","children":null,"spread":false},{"title":"u_rbfdemo.m <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"c_clademo.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"SVMClassifier.mat <span style='color:#111;'> 332.49KB </span>","children":null,"spread":false},{"title":"DemoData_class.mat <span style='color:#111;'> 141.27KB </span>","children":null,"spread":false},{"title":"c_rbfdemo.m <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"c_svcdemo.m <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"one_rbfdemo.m <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"u_clademo.m <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"c_poldemo.m <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"DemoData_train.mat <span style='color:#111;'> 421.89KB </span>","children":null,"spread":false},{"title":"u_lindemo.m <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"u_svcdemo.m <span style='color:#111;'> 750B </span>","children":null,"spread":false},{"title":"c_lindemo.m <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"u_poldemo.m <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"DemoData_test.mat <span style='color:#111;'> 141.27KB </span>","children":null,"spread":false}],"spread":false},{"title":"mexSVMTrain.mexglx <span style='color:#111;'> 161.14KB </span>","children":null,"spread":false},{"title":"mexSVMClass.mexglx <span style='color:#111;'> 162.11KB </span>","children":null,"spread":false},{"title":"SVMPlot.m <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"PolySVC.m <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"u_RbfSVC.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"mexSVMTrain.m <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"demos.m <span style='color:#111;'> 587B </span>","children":null,"spread":false},{"title":"cmap.mat <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"mexSVMClass.m <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"LinearSVC.m <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"u_PolySVC.m <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"Normalize.m <span style='color:#111;'> 234B </span>","children":null,"spread":false},{"title":"Scale.m <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"RbfSVC.m <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • baidu_28592045 :
    不错的资源,挺有用,值得一看
    2018-08-15
  • baidu_28592045 :
    不错的资源,挺有用,值得一看
    2018-08-15
  • younywang :
    坑,你这也不是SVR啊,是SVC
    2017-05-13
  • younywang :
    坑,你这也不是SVR啊,是SVC
    2017-05-13
  • chengyinghy :
    很不错的资源,很有用,非常感谢
    2017-04-05
  • chengyinghy :
    很不错的资源,很有用,非常感谢
    2017-04-05
  • ddmystar :
    谢谢分享,svr工具箱在fraulto那里可以直接下载
    2016-05-11
  • DDmystar :
    谢谢分享,svr工具箱在fraulto那里可以直接下载
    2016-05-11
  • zhuzhuzhu1234567 :
    为什么装不上?
    2016-05-06
  • zhuzhuzhu1234567 :
    为什么装不上?
    2016-05-06

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明