envi遥感图像处理之分类

上传者: serena0612 | 上传时间: 2026-01-26 14:00:46 | 文件大小: 866KB | 文件类型: DOC
遥感图像处理之分类 本文主要介绍遥感图像处理中的分类方法,包括非监督分类和监督分类两大类。非监督分类中,K-均值分类和ISODATA算法是两种常用的方法,而监督分类中,以最大似然法为例,进行分类的讲解说明。 一、非监督分类 非监督分类是指在不知道分类结果的情况下,对遥感图像进行分类的方法。常用的非监督分类方法有K-均值分类和ISODATA算法。 1、K-均值分类算法 K-均值分类算法是一种常用的非监督分类方法。其步骤如下: (1)打开待分类的遥感影像数据 (2)依次打开:ENVI 主菜单栏—>Classification—>Unsupervised—>K-Means,即进入 K-均值分类数据文件选择对话框 (3)选择待分类的数据文件 (4)选好数据以后,点击 OK 键,进入 K-Means 参数设置对话框,进行有关参数的设置,包括分类的类数、分类终止的条件、类均值左右允许误差、最大距离误差以及文件的输出等参数的设置 (5)建立光谱类和地物类之间的联系:在新窗口中显示分类结果图:然后,打开显示窗口菜单栏 Tools 菜单—>Color Mapping—>Class Color Mapping…进入分类结果的属性设置对话框,在这里,可以进行类别的名称,显示的颜色等,建立了光谱类和地物类之间的联系。 (6)类的合并问题:如果分出的类中,有一些需要进行合并,可按以下步骤进行:选择ENVI 主菜单 Classfaction—>Post Classfiction—>Combine Classes,进入待合并分类结果数据的选择对话框 点击 OK 键,进入合并参数设置对话框,在左边选择要合并的类,在右边选择合并后的类 ,点击 Add Combination 键即完成一组合并的设置,如此反复,对其他需合并的类进行此项操作,点击 OK,出现输出文件对话框,选择输出方式,即完成了类的合并的操作。 2、ISODATA 算法 ISODATA 算法与 K-均值分类算法相似。其步骤如下: (1)进行分类数据文件的选择(依次打开:ENVI 主菜单栏—>Classification—>Unsupervised—>IsoData 即进入 ISODATA 算法分类数据文件选择对话框,选择待分类的数据文件) (2)进行分类的相关参数的设置(点击 OK 键以后,进入参数设置对话框,可以进行分类的最大最小类数、迭代次数等参数的设置) (3)如此,光谱类的划分到此结束。 (4)参看 K-均值分类的第 5—6 步,进行光谱类与地物类联系的建立以及类的合并等操作 二、监督分类 监督分类是指在知道分类结果的情况下,对遥感图像进行分类的方法。常用的监督分类方法有最大似然法、平行六面体法、最小距离法、最大似然法、波谱角法、马氏距离法、二值编码法、神经网络法等。 以最大似然法为例,进行分类的讲解说明: (1)打开待分类的遥感影像数据文件 (2)进行训练样本的选取:在窗口中打开一张影像,选择主窗口菜单栏 Tools 键—>Region Of Interest—>ROI Tools…(或是在主窗口上单击右键,在弹出的快捷菜单栏中选择 ROI Tools…)进入训练样本选取对话框。 (3)进行训练样本的选取,New Region 可以建立新的样本区,在 ROI Name 栏中双击,键入类的地物名,在 Color 栏中双击,可以输入类的颜色,ROI_Type 菜单下可以进行样本类型的设置,在主窗口按鼠标左键即可进行样本区选择,以双击右键结束样本区的选取。 (4)进行最大似然法的分类:在 ENVI 主菜单栏中 Classification—>Supervised—>Maximum Likelihood,进入分类文件的选取对话框,选择相应的待分类文件。然后进入训练样本选取对话框,进行训练样本的选取及分类结果的存储等方面的设置。 (5)单击 OK 键,即开始进行分类。 (6)参看 K-均值分类的第 5—6 步,进行类的相关设置及类的合并等操作 三、两类分类方法的比较 本文使用 K-均值分类法和最大似然法进行了分类比较。从总体上看,两种分类的方法存在较大的差异,这是由于两种分类在相关参数的选取时都存在较大的主观性,在 K-均值分类的算法中,类数的选取对结果有显著影响,在最大似然法分类中,样本选取的数量,样本的质量以及样本的代表性等对分类的结果都会产生很大的影响,这就需要进行相关参数的调节来使得分类效果达到最佳。 遥感图像处理中的分类方法有多种,选择合适的分类方法对分类结果的影响很大。因此,在进行遥感图像处理时,需要根据实际情况选择合适的分类方法,并进行相关参数的调节,以达到最佳的分类效果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明