基于Python实现LSTM对股票走势的预测【100010285】

上传者: s1t16 | 上传时间: 2024-02-27 16:46:39 | 文件大小: 1.63MB | 文件类型: ZIP
详情介绍:https://blog.csdn.net/s1t16/article/details/128898122 为对股票价格的涨跌幅度进行预测,本文使用了基于长短期记忆网络(LSTM)的方法。根据股票涨跌幅问题, 通过对股票信息作多值量化分类,将股票预测转化成一个多维函数拟合问题。将股票的历史基本交易信息作为特征输入,利用神经网络对其训练,最后对股票的涨跌幅度做分类预测。

文件下载

资源详情

[{"title":"( 32 个子文件 1.63MB ) 基于Python实现LSTM对股票走势的预测【100010285】","children":[{"title":"stockpredict","children":[{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"数据挖掘比赛个人资料截图.png <span style='color:#111;'> 134.38KB </span>","children":null,"spread":false},{"title":"1852329_赵孟石_基于LSTM的对股票走势的预测.pdf <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"stockPredict","children":[{"title":"parser_my.py <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"getdata.py <span style='color:#111;'> 607B </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"draw.py <span style='color:#111;'> 518B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"510050.csv <span style='color:#111;'> 22.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"stockPredict-master.iml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 444B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false},{"title":"modules.xml <span style='color:#111;'> 290B </span>","children":null,"spread":false},{"title":"encodings.xml <span style='color:#111;'> 135B </span>","children":null,"spread":false}],"spread":true},{"title":"LSTMModel.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"diag.drawio <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"Figure_2.png <span style='color:#111;'> 35.13KB </span>","children":null,"spread":false},{"title":"Figure_3.png <span style='color:#111;'> 49.70KB </span>","children":null,"spread":false},{"title":"Figure_1.png <span style='color:#111;'> 70.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"stock.pkl <span style='color:#111;'> 57.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.csv <span style='color:#111;'> 22.21KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"dataset.cpython-37.pyc <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"dataset.cpython-36.pyc <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"parser_my.cpython-37.pyc <span style='color:#111;'> 896B </span>","children":null,"spread":false},{"title":"LSTMModel.cpython-36.pyc <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"parser_my.cpython-36.pyc <span style='color:#111;'> 888B </span>","children":null,"spread":false},{"title":"LSTMModel.cpython-37.pyc <span style='color:#111;'> 1005B </span>","children":null,"spread":false}],"spread":false},{"title":"pred.csv <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 33.68KB </span>","children":null,"spread":false},{"title":"数据挖掘竞赛成果截图.png <span style='color:#111;'> 191.58KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明