SuperCLUE中文大模型基准测评2024年上半年报告

上传者: robinfang2019 | 上传时间: 2024-08-16 09:54:32 | 文件大小: 16.57MB | 文件类型: PDF
2024年上半年,中文大模型取得了显著的进展,国内外大模型之间的差距进一步缩小,国内开源模型表现突出,端侧小模型在部分任务中表现优异。SuperCLUE团队发布的基准测试报告详细评估了各类大模型的性能和发展趋势。 核心结论 国内外大模型差距缩小:OpenAI的GPT-4o模型依然表现最佳,但国内大模型已将差距缩小至5%以内。 国内开源模型崛起:Qwen2-72B-Instruct模型在SuperCLUE中登顶,超过了众多闭源模型。 各任务表现:GPT-4o在文科、理科和Hard任务中综合最佳,Claude-3.5在Hard任务表现突出,Qwen2-72B在文科任务表现优异。 端侧小模型表现惊艳:部分小尺寸模型表现好于上一代大模型,提升了落地可行性。 5. 优秀模型案例介绍 5.1 Qwen2-72B-Instruct 5.2 SenseChat5.0 简介:商汤科技的大模型,参数量高达6000亿。 适合应用:汽车、工业、金融、医疗等垂直专业场景。 5.3 山海大模型4.0 简介:云知声的大语言模型,参数量未公布。 适合应用:医疗、教育等垂直专业场景。 5.4 AndesGPT ### SuperCLUE中文大模型基准测评2024年上半年报告 #### 核心结论概览 2024年上半年,中文大模型领域的研究与发展取得了显著的进步。本报告旨在全面总结和评估这一时期内的关键技术成果与趋势变化。核心结论包括: 1. **国内外大模型之间的差距进一步缩小**:OpenAI的GPT-4o模型虽然仍然是全球表现最佳的大模型之一,但中国研发的大模型已经将差距缩小到5%以内。 2. **国内开源模型崭露头角**:Qwen2-72B-Instruct作为一款开源模型,在SuperCLUE基准测试中表现出色,超越了许多国内外闭源模型。 3. **各任务领域表现各异**:GPT-4o在文科、理科以及Hard任务中表现最优;Claude-3.5则在Hard任务中脱颖而出;而Qwen2-72B在文科任务方面有着卓越的表现。 4. **端侧小模型展现出惊人的能力**:部分小尺寸模型的性能甚至优于上一代大模型,这大大提高了它们在实际应用场景中的可行性。 #### 技术趋势分析 - **国内外大模型差距的缩小**:随着中国企业在人工智能领域投入不断加大,自主研发的技术能力不断提升,国内外大模型之间的性能差距正在逐步缩小。这种趋势表明,中国在人工智能领域的竞争力日益增强。 - **国内开源模型的崛起**:开源模型的兴起为中国乃至全球的人工智能开发者提供了更多的选择,有助于促进技术创新和知识共享。Qwen2-72B-Instruct的成功证明了开源模型不仅能够达到高质量标准,还能够在国际竞争中占据有利位置。 - **任务特异性表现差异**:不同模型在不同任务上的表现各有特点,反映出特定场景下的优势和局限性。例如,GPT-4o在综合性任务中表现出色,而Claude-3.5在Hard任务中更胜一筹,这些差异对于用户根据具体需求选择合适的模型至关重要。 - **端侧小模型的发展**:端侧小模型因其体积小巧、易于部署的特点,在资源受限的设备上展现出巨大的潜力。这类模型的发展不仅推动了人工智能技术的普及,也为边缘计算和物联网技术的应用开辟了新的可能。 #### 优秀模型案例介绍 - **Qwen2-72B-Instruct**:作为国内开源模型的代表,Qwen2-72B-Instruct在SuperCLUE基准测试中取得了优异的成绩。该模型通过深度学习技术训练而成,具备强大的语言理解和生成能力,适用于多种自然语言处理任务。 - **SenseChat5.0**:由商汤科技开发,是一款参数量高达6000亿的大模型。SenseChat5.0专为汽车、工业、金融和医疗等垂直专业场景设计,能够提供精准的专业咨询和服务。 - **山海大模型4.0**:云知声研发的一款大语言模型,虽然参数量未知,但在医疗和教育等垂直领域有着广泛的应用前景。 - **AndesGPT**:OPPO发布的这款模型在特定领域也展现出了不俗的能力。 #### 结论 2024年上半年的中文大模型发展呈现出多元化的趋势,不仅国内外差距缩小,而且国内开源模型展现出强大的竞争力。此外,端侧小模型的进步也预示着人工智能技术在未来更加广泛的实用化前景。随着技术的不断发展和完善,中文大模型将在更多领域发挥重要作用。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明