[{"title":"( 88 个子文件 743KB ) 人工神经网络模型matlab源码.zip","children":[{"title":"人工神经网络模型matlab源码","children":[{"title":"案例20 神经网络变量筛选—基于BP的神经网络变量筛选","children":[{"title":"network.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"Untitled.m <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"bbb.m <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"chapter20.m <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"p.mat <span style='color:#111;'> 45.89KB </span>","children":null,"spread":false},{"title":"randomwalk.m <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"aaa.m <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"input.mat <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"output.mat <span style='color:#111;'> 7.35KB </span>","children":null,"spread":false},{"title":"t.mat <span style='color:#111;'> 45.89KB </span>","children":null,"spread":false}],"spread":false},{"title":"案例2BP神经网络的非线性系统建模-非线性函数拟合.rar <span style='color:#111;'> 47.31KB </span>","children":null,"spread":false},{"title":"案例6 PID神经元网络解耦控制算法_多变量系统控制","children":[{"title":"MPIDDLX.m <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"draw.m <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"fun.m <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"pso.m <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"MPID.m <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"MPIDCS.m <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例18 Elman神经网络的数据预测—电力负荷预测模型研究","children":[{"title":"chapter18.m <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例19 概率神经网络的分类预测-基于PNN变压器故障诊断","children":[{"title":"chapter19.m <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 805B </span>","children":null,"spread":false}],"spread":true},{"title":"案例3 遗传算法优化BP神经网络-非线性函数拟合","children":[{"title":"Decode.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"Cross.m <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"Code.m <span style='color:#111;'> 420B </span>","children":null,"spread":false},{"title":"Genetic.m <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"BP.m <span style='color:#111;'> 772B </span>","children":null,"spread":false},{"title":"Mutation.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"Select.m <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 45.32KB </span>","children":null,"spread":false},{"title":"test.m <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"fun.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例17 SOM神经网络的数据分类--柴油机故障诊断","children":[{"title":"p.mat <span style='color:#111;'> 606B </span>","children":null,"spread":false},{"title":"chapter17.m <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"运行说明.txt <span style='color:#111;'> 63B </span>","children":null,"spread":false},{"title":"addon.m <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例5 基于BP_Adaboost的强分类器设计-公司财务预警建模","children":[{"title":"Bp_Ada_Sort.m <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"Bp_Ada_Fore.m <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"data1.mat <span style='color:#111;'> 45.31KB </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 11.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例4 神经网络遗传算法函数极值寻优-非线性函数极值","children":[{"title":"Cross.m <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"Code.m <span style='color:#111;'> 420B </span>","children":null,"spread":false},{"title":"Genetic.m <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"BP.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"Mutation.m <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"data.m <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"Select.m <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"net.mat <span style='color:#111;'> 535B </span>","children":null,"spread":false},{"title":"test.asv <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 92.46KB </span>","children":null,"spread":false},{"title":"test.m <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"fun.m <span style='color:#111;'> 326B </span>","children":null,"spread":false}],"spread":false},{"title":"案例13 SVM神经网络中的参数优化---提升分类器性能","children":[{"title":"chapter13_PSO.m <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"html","children":[{"title":"chapter13_GridSearch_05.png <span style='color:#111;'> 21.73KB </span>","children":null,"spread":false},{"title":"chapter13_04.png <span style='color:#111;'> 13.83KB </span>","children":null,"spread":false},{"title":"chapter13.png <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"chapter13_GA_01.png <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"chapter13_06.png <span style='color:#111;'> 14.89KB </span>","children":null,"spread":false},{"title":"chapter13_PSO_01.png <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch_04.png <span style='color:#111;'> 899B </span>","children":null,"spread":false},{"title":"chapter13_GridSearch_07.png <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"chapter13_03.png <span style='color:#111;'> 11.21KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch_06.png <span style='color:#111;'> 15.43KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch_01.png <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"chapter13_GA_03.png <span style='color:#111;'> 12.94KB </span>","children":null,"spread":false},{"title":"chapter13_GA_02.png <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"chapter13_PSO_04.png <span style='color:#111;'> 8.85KB </span>","children":null,"spread":false},{"title":"chapter13_07.png <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"chapter13_01.png <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"chapter13_PSO_03.png <span style='color:#111;'> 13.71KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch.png <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"chapter13.html <span style='color:#111;'> 27.83KB </span>","children":null,"spread":false},{"title":"chapter13_PSO_02.png <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"chapter13_05.png <span style='color:#111;'> 17.75KB </span>","children":null,"spread":false},{"title":"chapter13_GA_04.png <span style='color:#111;'> 8.85KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch_03.png <span style='color:#111;'> 12.33KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch_02.png <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"chapter13_PSO.html <span style='color:#111;'> 33.44KB </span>","children":null,"spread":false},{"title":"chapter13_PSO.png <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"chapter13_GA.html <span style='color:#111;'> 26.67KB </span>","children":null,"spread":false},{"title":"chapter13_02.png <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"chapter13_GA.png <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch.html <span style='color:#111;'> 26.21KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter13_GA.m <span style='color:#111;'> 7.98KB </span>","children":null,"spread":false},{"title":"chapter13_GridSearch.m <span style='color:#111;'> 7.58KB </span>","children":null,"spread":false},{"title":"chapter13_wine.mat <span style='color:#111;'> 19.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例2 BP神经网络的非线性系统建模-非线性函数拟合","children":[{"title":"BP_Hidden.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"BP.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 45.29KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]