Hands-On.Machine.Learning.with.Scikit-Learn.and.TensorFlow.azw3

上传者: ramissue | 上传时间: 2018-03-18 16:04:25 | 文件大小: 21.66MB | 文件类型: azw3
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details Table of Contents Chapter 1: The Machine Learning Landscape Chapter 2: End-to-End Machine Learning Project Chapter 3: Classification Chapter 4: Training Linear Models Chapter 5: Support Vector Machines Chapter 6: Decision Trees Chapter 7: Ensemble Learning and Random Forests Chapter 8: Dimensionality Reduction Chapter 9: Up and Running with TensorFlow Chapter 10: Introduction to Artificial Neural Networks Chapter 11: Training Deep Neural Nets Chapter 12: Distributing TensorFlow Across Devices and S

文件下载

评论信息

  • photoshop122 :
    资源很好,谢谢楼主分享
    2018-07-14
  • juniusZhouGmail :
    适合入门,感谢
    2018-05-01
  • xqzhou :
    非常好的一本书
    2018-01-06
  • ML_NI_CSU :
    azw3格式用什么打开?
    2017-11-03
  • jsynl :
    非常感谢分享,好书!
    2017-10-17

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明