Tensorflow2.0--master.zip

上传者: qqgmaa | 上传时间: 2022-07-30 16:06:12 | 文件大小: 3.6MB | 文件类型: ZIP
TensorFlow2.0课程代码,KerasTensorflowScikitLearn实现各种神经网络模型

文件下载

资源详情

[{"title":"( 74 个子文件 3.6MB ) Tensorflow2.0--master.zip","children":[{"title":"Tensorflow2.0--master","children":[{"title":"chapter_4","children":[{"title":"tf_data_generate_tfrecord.ipynb <span style='color:#111;'> 24.94KB </span>","children":null,"spread":false},{"title":"tf-data_basic_api.ipynb <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"tf-tfrecord_basic_api.ipynb <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false},{"title":"tf_data_generate_csv.ipynb <span style='color:#111;'> 23.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_3","children":[{"title":"tf_function_and_auto_graph.ipynb <span style='color:#111;'> 12.27KB </span>","children":null,"spread":false},{"title":"tf_basic_api.ipynb <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-customized_layer.ipynb <span style='color:#111;'> 53.10KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-customized_loss.ipynb <span style='color:#111;'> 41.76KB </span>","children":null,"spread":false},{"title":"tf_diffs.ipynb <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-manu-diffs.ipynb <span style='color:#111;'> 14.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_8","children":[{"title":"tf_gpu_4_manual_multi_gpu.ipynb <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"tf_gpu_2-visible_gpu.ipynb <span style='color:#111;'> 14.01KB </span>","children":null,"spread":false},{"title":"tf_distributed_estimator.ipynb <span style='color:#111;'> 12.43KB </span>","children":null,"spread":false},{"title":"tf_gpu_1.ipynb <span style='color:#111;'> 17.87KB </span>","children":null,"spread":false},{"title":"tf_distributed_keras_baseline.ipynb <span style='color:#111;'> 14.03KB </span>","children":null,"spread":false},{"title":"tf_gpu_3-virtual_device.ipynb <span style='color:#111;'> 14.17KB </span>","children":null,"spread":false},{"title":"tf_distributed_customized_training.ipynb <span style='color:#111;'> 22.24KB </span>","children":null,"spread":false},{"title":"tf_distributed_estimator_baseline.ipynb <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false},{"title":"tf_gpu_4-manual_multi_gpu_model.ipynb <span style='color:#111;'> 16.01KB </span>","children":null,"spread":false},{"title":"tf_distributed_keras.ipynb <span style='color:#111;'> 22.02KB </span>","children":null,"spread":false},{"title":"tf_customized_training_baseline.ipynb <span style='color:#111;'> 14.97KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_10","children":[{"title":"transformer.ipynb <span style='color:#111;'> 150.56KB </span>","children":null,"spread":false},{"title":"seq2seq_attention.ipynb <span style='color:#111;'> 78.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_5_tf1(带数据)","children":[{"title":"data","children":[{"title":"titanic","children":[{"title":"train.csv <span style='color:#111;'> 30.15KB </span>","children":null,"spread":false},{"title":"eval.csv <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"tf1_dataset.ipynb <span style='color:#111;'> 11.80KB </span>","children":null,"spread":false},{"title":"tf1_customized_estimator.ipynb <span style='color:#111;'> 24.62KB </span>","children":null,"spread":false},{"title":"tf1_dense_network.ipynb <span style='color:#111;'> 9.18KB </span>","children":null,"spread":false},{"title":"tf1_initialized_dataset.ipynb <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 142B </span>","children":null,"spread":false},{"title":"chapter_6","children":[{"title":"tf_keras_classification_model-separable_cnn.ipynb <span style='color:#111;'> 27.34KB </span>","children":null,"spread":false},{"title":"10_monkeys_model_1.ipynb <span style='color:#111;'> 52.76KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-cnn-selu.ipynb <span style='color:#111;'> 33.46KB </span>","children":null,"spread":false},{"title":"cifar10_model_1.ipynb <span style='color:#111;'> 67.98KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-cnn.ipynb <span style='color:#111;'> 42.45KB </span>","children":null,"spread":false},{"title":"10_monkeys_model_2_resnet50_finetune.ipynb <span style='color:#111;'> 104.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_5","children":[{"title":"data","children":[{"title":"titanic","children":[{"title":"train.csv <span style='color:#111;'> 30.15KB </span>","children":null,"spread":false},{"title":"eval.csv <span style='color:#111;'> 12.74KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"tf_premade_estimators.ipynb <span style='color:#111;'> 19.61KB </span>","children":null,"spread":false},{"title":"tf_premade_estimators-new_feature.ipynb <span style='color:#111;'> 20.53KB </span>","children":null,"spread":false},{"title":"tf_keras_to_estimator.ipynb <span style='color:#111;'> 71.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_9","children":[{"title":"to_concrete_function.ipynb <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"signature_to_saved_model.ipynb <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"tfjs_converter.ipynb <span style='color:#111;'> 32.43KB </span>","children":null,"spread":false},{"title":"keras_load_weights.ipynb <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"tfjs_converter_py.ipynb <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"tfjs_loader","children":[{"title":"main.js <span style='color:#111;'> 462B </span>","children":null,"spread":false},{"title":"main.html <span style='color:#111;'> 291B </span>","children":null,"spread":false}],"spread":false},{"title":"to_quantized_tflite.ipynb <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false},{"title":"keras_saved_model.ipynb <span style='color:#111;'> 34.88KB </span>","children":null,"spread":false},{"title":"to_tflite.ipynb <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"quantized_tflite_interpreter.ipynb <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"keras_save_graph_def_and_weights.ipynb <span style='color:#111;'> 34.32KB </span>","children":null,"spread":false},{"title":"tflite_interpreter.ipynb <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter_7","children":[{"title":"text_generation_lstm.ipynb <span style='color:#111;'> 32.37KB </span>","children":null,"spread":false},{"title":"embedding_padding_pooling.ipynb <span style='color:#111;'> 1.64MB </span>","children":null,"spread":false},{"title":"embedding_rnn.ipynb <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false},{"title":"embedding_lstm.ipynb <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"text_generation.ipynb <span style='color:#111;'> 31.29KB </span>","children":null,"spread":false},{"title":"shakespeare.txt <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter_2","children":[{"title":"tf_keras_regression-wide_deep-multi-input.ipynb <span style='color:#111;'> 31.11KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-dnn-selu.ipynb <span style='color:#111;'> 34.49KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-normalize.ipynb <span style='color:#111;'> 31.58KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model.ipynb <span style='color:#111;'> 102.39KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-dnn-bn.ipynb <span style='color:#111;'> 37.25KB </span>","children":null,"spread":false},{"title":"tf_keras_regression.ipynb <span style='color:#111;'> 32.95KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-hp-search-sklearn.ipynb <span style='color:#111;'> 213.15KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-dnn.ipynb <span style='color:#111;'> 39.63KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-wide_deep-multi-output.ipynb <span style='color:#111;'> 68.68KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-dnn-selu-dropout.ipynb <span style='color:#111;'> 38.13KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-wide_deep-subclass.ipynb <span style='color:#111;'> 27.16KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-hp-search.ipynb <span style='color:#111;'> 131.20KB </span>","children":null,"spread":false},{"title":"tf_keras_classification_model-callbacks.ipynb <span style='color:#111;'> 32.34KB </span>","children":null,"spread":false},{"title":"tf_keras_regression-wide_deep.ipynb <span style='color:#111;'> 33.19KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明